cos
π
5
+cos
5
+cos
5
+cos
5
+cosπ=
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:原式結合后,利用誘導公式化簡,再利用特殊角的三角函數(shù)值計算即可得到結果.
解答: 解:原式=(cos
π
5
+cos
5
)+(cos
5
+cos
5
)+cosπ
=[cos
π
5
+cos(π-
π
5
)]+[cos
5
+cos(π-
5
)]+cosπ
=(cos
π
5
-cos
π
5
)+(cos
5
-cos
5
)+cosπ
=cosπ
=-1.
故答案為:-1
點評:此題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx-
4
)(ω>0)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)若f(
α
2
+
8
)=
24
25
,且α∈(-
π
2
,
π
2
),求tanα的值.
(Ⅲ)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象(完成列表并作圖).
(1)列表
x 0
8
8
π
y -1 1
(2)描點,連線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知12<a<60,15<b<36,則a-b的取值區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,x),
b
=(-1,x),若2
a
-
b
b
垂直,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=tanx+cos(x+m)為奇函數(shù),且m滿足不等式
m2-9
m(m-1)
≤0,則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,3),B(3,0),且
AC
=-2
CB
,則點C的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,若z=kx+y的最大值為5,且k為負整數(shù),則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z1=a+2i,z2=2+i,且
z1
z2
為純虛數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
3
3
,且tanα<0,則sin2α的值等于( 。
A、
2
2
3
B、
1
3
C、-
2
2
3
D、-
1
3

查看答案和解析>>

同步練習冊答案