【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.
【答案】(I)證明:在[1,+∞)上任取x1 , x2 , 且x1<x2
(
=
∵x1<x2∴x1﹣x2<0
∵x1∈[1,+∞),x2∈[1,+∞)∴x1x2﹣1>0
∴f(x1)﹣f(x2)<0即f(x1)<f(x2)
故f(x)在[1,+∞)上是增函數(shù)
(II)解:由(I)知:
f(x)在[1,4]上是增函數(shù)
∴當x=1時,有最小值2;
當x=4時,有最大值
【解析】(I)用單調(diào)性定義證明,先任取兩個變量且界定大小,再作差變形看符號.(II)由(I)知f(x)在[1,+∞)上是增函數(shù),可知在[1,4]也是增函數(shù),則當x=1時,取得最小值,當x=4時,取得最大值.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的單調(diào)性的相關(guān)知識,掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種.
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,數(shù)列{an} 的前 n 項的和記為 Sn .S
(1)求S1,S2,S3的值,猜想Sn的表達式;
(2)請用數(shù)學歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)r是方程f(x)=0的根,選取x0作為r的初始近似值,過點(x0,f(x0))做曲線y=f(x)的切線l,l的方程為y=f(x0)+(x-x0),求出l與x軸交點的橫坐標x1=x0-,稱x1為r的一次近似值。過點(x1,f(x1))做曲線y=f(x)的切線,并求該切線與x軸交點的橫坐標x2=x1-,稱x2為r的二次近似值。重復以上過程,得r的近似值序列,其中,=-,稱為r的n+1次近似值,上式稱為牛頓迭代公式。已知是方程-6=0的一個根,若取x0=2作為r的初始近似值,則在保留四位小數(shù)的前提下,≈
A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)設(shè)點在上,點在上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點, 的四個頂點構(gòu)成的四邊形面積為.
(1)求橢圓的方程;
(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把一副三角板ABC與ABD擺成如圖所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)則異面直線DC,AB所成角的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點 P(2,2)的直線m與曲線C交于A,B兩點,設(shè)當△AOB的面積為4時(O為坐標原點),求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)雙曲線 的兩個焦點分別為F1、F2離心率e=2.
(1)求此雙曲線的漸近線l1、l2的方程;
(2)若A、B分別為l1、l2上的點,且 求線段AB的中點M的軌跡方程.
(3)過點N(1,0)能否作直線l , 使l與雙曲線交于不同兩點P、Q.且 ,若存在,求直線l的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{bn}是首項b1=1,b4=10的等差數(shù)列,設(shè)bn+2=3 an(n∈n*).
(1)求證:{an}是等比數(shù)列;
(2)記cn= ,求數(shù)列{cn}的前n項和Sn;
(3)記dn=(3n+1)Sn , 若對任意正整數(shù)n,不等式 + +…+ > 恒成立,求整數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com