【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點 P(2,2)的直線m與曲線C交于A,B兩點,設(shè)當△AOB的面積為4時(O為坐標原點),求 的值.
【答案】
(1)
【解答】 點M到點F(1.0)的距離比它到直線的距離小于1,
∴點M在直線l的上方,點M到F(1,0)的距離與它到直線 的距離相等 所以點M的軌跡C是以F為焦點,l'為準線的拋物線 ,所以曲線C的方程為x2=4y .
(2)
【解答】當直線m的斜率不存在時,它與曲線C只有一個交點,不合題意,
設(shè)直線m的方程為 ,代入 (*)
,對恒成立,所以直線m與曲線C恒有兩個不同的交點設(shè)交點A,B的坐標分別為 ,
則
所以
點O到直線m的距離 ,
所以
所以或(舍去)
或
當 是, 方程(*)的解為 ,或
當 時 方程(☆)的解為
【解析】(1)由題設(shè)知:點M的軌跡C是以F為焦點,l′為準線的拋物線,由此能求出曲線C的方程.(2)設(shè)直線m的方程為y=kx+(2-2k),代入x2=4y,得x2-4kx+8(k-1)=0,由△=16(k2-2k+2)>0對k∈R恒成立,知直線m與曲線C恒有兩個不同的交點,再由韋達定理、弦長公式、點到直線的距離公式,利用 、△AOB的面積為4 ,能求出λ的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合S={A0 , A1 , A2 , A3},在S上定義運算⊕:Ai⊕Aj=Ak , 其中k為i+j被4除的余數(shù),i,j=0,1,2,3,則使關(guān)系式(Ai⊕Ai)⊕Aj=A0成立的有序數(shù)對(i,j)的組數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=x2-2x+1+alnx 有兩個極值點 x1,x2 , 且x1<x2 ,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,函數(shù) f(x)=x2(x-a) ,若f'(1)=1 .
(1)求 a 的值并求曲線 y=f(x) 在點(1,f(1)) 處的切線方程y=g(x) ;
(2)設(shè)h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點,給出下列四個判斷:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點的距離之和為定值;
②曲線C關(guān)于直線y=x、y=-x均對稱;③曲線C所圍區(qū)域面積必小于36.
④曲線C總長度不大于6π.上述判斷中正確命題的序號為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是( )
A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當x=4時,f(x)取極大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com