【題目】某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?
【答案】(1) 見解析;(2)19. (3)n=19.
【解析】試題分析:(1)確定X 的可能取值,求其概率即可得到X的分布列。
(2)根據(jù)(1)中求得的概率,可得到P(X≤18)以及P(X≤19)的概率值,即可確定n最小值為19。
(3)求得n=19,n=20時(shí)的數(shù)學(xué)期望,比較大小,所需費(fèi)用期望值較小的,即n的取值。
試題解析:(1)由柱狀圖并以頻率代替概率可得,一臺(tái)機(jī)器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2,
從而P(X=16)=0.2×0.2=0.04;
P(X=17)=2×0.2×0.4=0.16;
P(X=18)=2×0.2×0.2+0.4×0.4=0.24;
P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;
P(X=20)=2×0.2×0.4+0.2×0.2=0.2;
P(X=21)=2v0.2×0.2=0.08;
P(X=22)=0.2×0.2=0.04.
∴X的分布列為
X | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
P | 0.04 | 0.16 | 0.24 | 0.24 | 0.2 | 0.08 | 0.04 |
(2)由(1)知P(X≤18)=0.44,
P(X≤19)=0.68,故n的最小值為19.
(3)記Y表示2臺(tái)機(jī)器在購(gòu)買易損零上所需的費(fèi)用(單位:元).
當(dāng)n=19時(shí),E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×
0.08+(19×200+3×500)×0.04=4040.
當(dāng)n=20時(shí),E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.
可知當(dāng)n=19時(shí)所需費(fèi)用的期望值小于n=20時(shí)所需費(fèi)用的期望值,故應(yīng)選n=19.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個(gè)單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說(shuō)法正確的是( )
A.在[ , ]上是增函數(shù)
B.其圖象關(guān)于直線x=﹣ 對(duì)稱
C.函數(shù)g(x)是奇函數(shù)
D.當(dāng)x∈[ , π]時(shí),函數(shù)g(x)的值域是[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C的對(duì)邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩臺(tái)車床加工同一種機(jī)械零件如下表:
分類 | 合格品 | 次品 | 總計(jì) |
第一臺(tái)車床加工的零件數(shù) | 35 | 5 | 40 |
第二臺(tái)車床加工的零件數(shù) | 50 | 10 | 60 |
總計(jì) | 85 | 15 | 100 |
從這100個(gè)零件中任取一個(gè)零件,求:
(1)取得合格品的概率;
(2)取得零件是第一臺(tái)車床加工的合格品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.(Ⅰ)若的面積等于,求;(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在(0, )上處處可導(dǎo),若[f(x)﹣f′(x)]tanx﹣f(x)<0,則( )
A.一定小于
B.一定大于
C.可能大于
D.可能等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C與橢圓E: 共焦點(diǎn),并且經(jīng)過點(diǎn) ,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在橢圓C上任取兩點(diǎn)P、Q,設(shè)PQ所在直線與x軸交于點(diǎn)M(m,0),點(diǎn)P1為點(diǎn)P關(guān)于軸x的對(duì)稱點(diǎn),QP1所在直線與x軸交于點(diǎn)N(n,0),探求mn是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),過F1的直線交橢圓C于P,Q兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓c的方程;
(2)設(shè)過點(diǎn)M(3,0)的直線交橢圓C于不同兩點(diǎn)A,B,N為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com