【題目】如下圖,在三棱錐 中, , , 為 的中點(diǎn).
(1)求證: ;
(2)設(shè)平面 平面 , , ,求二面角 的正弦值.
【答案】
(1)證明:設(shè) 的中點(diǎn)為 ,連接 ,∵ ,∴ ,
又∵ 為 的中點(diǎn),∴ ,∵ ,∴ .
∵ ,∴ 平面 ,
又∵ 平面 ,
∴
(2)解:由(1)知: , ,
∵平面 平面 ,
平面 平面 平面 ,
∴ 平面 ,∵ 平面 ,
∴ ,∴ 兩兩互相垂直.
∵ ,∴ .
由 為 的中點(diǎn), 得 ,
以 為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系 ,則 ,
∴ .
設(shè)平面 的一個(gè)法向量為 ,則 .
∴ ,取 ,解得 ,
∴ 是平面 的一個(gè)法向量.
同理可求平面 的一個(gè)法向量 .
設(shè)二面角 的大小為 ,則 ,
∵ ,∴ ,
二面角 的正弦值為 .
【解析】(1)通過(guò)直線與平面垂直證明直線與直線垂直;
(2)建立空間直角坐標(biāo)系,求出平面的法向量,利用法向量的夾角求二面角.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線與平面垂直的判定和直線與平面垂直的性質(zhì),掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;垂直于同一個(gè)平面的兩條直線平行即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.?dāng)?shù)列滿足
,,且其前9項(xiàng)和為153.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王在年初用50萬(wàn)元購(gòu)買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車每年的運(yùn)輸收入均為25萬(wàn)元.小王在該車運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為25-x萬(wàn)元(國(guó)家規(guī)定大貨車的報(bào)廢年限為10年).
(1)大貨車運(yùn)輸?shù)降趲啄昴甑,該車運(yùn)輸累計(jì)收入超過(guò)總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤(rùn)最大(利潤(rùn)=累計(jì)收入+銷售收入-總支出)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)在單位圓上的 中,角 的對(duì)邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且=,求tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列 中, ,且 成等差數(shù)列.
(1)求等比數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項(xiàng)和 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列 中, ,數(shù)列 中, .
(1)求數(shù)列 , 的通項(xiàng)公式;
(2)若 ,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)為的中點(diǎn).
()求證: 平面.
()求證:平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com