【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列 中, ,且 成等差數(shù)列.
(1)求等比數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項(xiàng)和 的最大值.
【答案】
(1)解:設(shè)數(shù)列{an}的公比為q , an>0
因?yàn)?a1 , a3 , 3a2成等差數(shù)列,
所以2a1+3a2=2a3 ,
即 ,
所以2q2-3q-2=0,
解得q=2或 (舍去),
又a1=2,所以數(shù)列{an}的通項(xiàng)公式
(2)解:由題意得,bn=11-2log2an=11-2n ,
則b1=9,且bn+1-bn=-2,
故數(shù)列{bn}是首項(xiàng)為9,公差為-2的等差數(shù)列,
所以 =-(n-5)2+25,
所以當(dāng)n=5時(shí),Tn的最大值為25
【解析】(1)將2a1 , a3 , 3a2以a和q的形式表示,再利用成等差,解得q的值,即得an的通項(xiàng)公式。
(2)將an的通項(xiàng)公式代入bn中,求出bn的首項(xiàng)和公差,再用前n項(xiàng)和公式即可求出。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的前n項(xiàng)和公式(前n項(xiàng)和公式:),還要掌握等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各個(gè)說法正確的是( )
A. 終邊相同的角都相等 B. 鈍角是第二象限的角
C. 第一象限的角是銳角 D. 第四象限的角是負(fù)角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在三棱錐 中, , , 為 的中點(diǎn).
(1)求證: ;
(2)設(shè)平面 平面 , , ,求二面角 的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為( )
A.y=tan(2x+ )
B.y=tan(x﹣ )
C.y=tan(2x﹣ )
D.y=tan2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測得身高情況的統(tǒng)計(jì)圖如圖所示:
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)等差數(shù)列{an}中,a1+3a8+a15=120,求2a9-a10的值;
(2)在等差數(shù)列{an}中,a15=8,a60=20,求a75的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知連續(xù)不斷函數(shù),,,
(1)證明:函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn);
(2)現(xiàn)已知函數(shù)在上單調(diào)遞增,且都只有一個(gè)零點(diǎn)(不必證明),記三個(gè)函數(shù)的零點(diǎn)分別為。
求證:Ⅰ);
Ⅱ)判斷與的大小,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓(x-1)2+(y+1)2=R2上有且僅有兩個(gè)點(diǎn)到直線4x+3y=11的距離等于1,則半徑R的取值范圍是( )
A. R>1 B. R<3 C. 1<R<3 D. R≠2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com