【題目】某冷飲店只出售一種飲品,該飲品每一杯的成本價為3元,售價為8元,每天售出的第20杯及之后的飲品半價出售.該店統(tǒng)計了近10天的飲品銷量,如圖所示:設(shè)為每天飲品的銷量,為該店每天的利潤.
(1)求關(guān)于的表達(dá)式;
(2)從日利潤不少于96元的幾天里任選2天,求選出的這2天日利潤都是97元的概率.
【答案】(1)(2)
【解析】
試題分析:(1)根據(jù)利潤等于銷量乘以每一杯利潤,而每一杯利潤與銷量是分段函數(shù)關(guān)系,得當(dāng)時,每一杯利潤為,所以;當(dāng)時,中每一杯利潤為,從第起每一杯利潤為;(2)由,所以日利潤不少于96元共有5天,由,所以日利潤是97元共有2天,利用列舉法得從這5天中任取2天共有10種基本事件,其中選出的2天銷量都為21天的情況只有1種,因此所求概率為
試題解析:(1)...........6分
(2)由(1)可知:日銷售量不少于20杯時,日利潤不少于96元;
日銷售量為20杯時,日利潤為96元;日銷售量為21杯的有2 天,..................8分
銷量為20杯的3天,記為,銷量為21杯的2 天,記為,從這5天中任取2天,包括共10種情況.........10分
其中選出的2天銷量都為21天的情況只有1種,故所求概率為.............12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,,…,,并整理得到如下頻率分布直方圖:
(1)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等,試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
(1)若,過點(diǎn)的直線交曲線于兩點(diǎn),且,求直線的方程;
(2)若曲線表示圓時,已知圓與圓交于兩點(diǎn),若弦所在的直線方程為, 為圓的直徑,且圓過原點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱中, , , 分別為和的中點(diǎn).
(1)求證: //平面;
(2)若為中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)當(dāng)時,求在區(qū)間上的最值;
(2)討論的單調(diào)性;
(3)當(dāng)時,有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點(diǎn).
(1)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(2)若弦長,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)有且只有一個極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)對于函數(shù),,,若對于區(qū)間上的任意一個,都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”.已知,,問是否存在實(shí)數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”?若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4個男生,3個女生站成一排.(必須寫出算式再算出結(jié)果才得分)
(Ⅰ)3個女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個人,有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,其中.
(1)求證:直線恒過定點(diǎn);
(2)當(dāng)變化時,求點(diǎn)到直線的距離的最大值;
(3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com