【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù)使得,則實數(shù)的值為( )
A. B. C. D.
【答案】A
【解析】
令f(x)﹣g(x)=2x+e2x﹣a﹣1n(2x+2)+4ea﹣2x,用導(dǎo)數(shù)求出y=2x﹣ln(2x+2)的最小值;運用基本不等式得e2x﹣a+4ea﹣2x≥4,從而可證明f(x)﹣g(x)≥3,由等號成立的條件,從而解得a.
令f(x)﹣g(x)=2x+e2x﹣a﹣1n(2x+2)+4ea﹣2x,
令y=2x﹣ln(2x+2),y′=2﹣=,
故y=2x﹣ln(2x+2)在(﹣1,﹣)上是減函數(shù),(﹣,+∞)上是增函數(shù),
故當(dāng)x=﹣時,y有最小值﹣1﹣0=﹣1,
而e2x﹣a+4ea﹣2x≥4(當(dāng)且僅當(dāng)e2x﹣a=4ea﹣2x,即x=(a+ln2)時,等號成立);
故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r成立時,等號成立);
故x=(a+ln2)=﹣,即a=﹣1﹣ln2.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角、、的對邊分別為、、,為內(nèi)一點,若分別滿足下列四個條件:
①;
②;
③;
④;
則點分別為的( )
A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心
C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學(xué)員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學(xué)員第1次參加科目二考試進行了統(tǒng)計,得到下表:
考試情況 | 男學(xué)員 | 女學(xué)員 |
第1次考科目二人數(shù) | 1200 | 800 |
第1次通過科目二人數(shù) | 960 | 600 |
第1次未通過科目二人數(shù) | 240 | 200 |
若以上表得到的男、女學(xué)員第1次通過科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.
(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;
(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小為 60°,則點 C 到平面 ABC1 的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱 ABC A1 B1C1 中, AB 3 , AA1 4 , M 為 AA1 的中點, P 是 BC 上一點,且由 P 沿棱柱側(cè)面經(jīng)過棱 CC1 到 M 點的最短路線長為 ,設(shè)這條最短路線與 CC1 的交點為 N 。求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2) PC 和 NC 的長;
(3)平面 NMP 和平面 ABC 所成銳二面角大小的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.
(Ⅰ)若,在折疊后的線段上是否存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由;
(Ⅱ)當(dāng)三棱錐的體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標(biāo)滿足條件:的最大值為0,則稱為“柯西函數(shù)”,
則下列函數(shù):
;
;
;
.
其中為“柯西函數(shù)”的個數(shù)為
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時期的數(shù)學(xué)家張丘建是世界數(shù)學(xué)史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個解不定方程的百雞問題,問題如下:雞翁一,值錢五,雞母一,值錢三,雞雛三,值錢一.百錢買百雞,問雞翁母雛各幾何?用代數(shù)方法表述為:設(shè)雞翁、雞母、雞雛的數(shù)量分別為,,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,平面,,,,,,,是的中點.
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com