【題目】在首屆中國(guó)國(guó)際商品博覽會(huì)期間,甲、乙、丙三家供貨公司各簽訂了兩個(gè)供貨合同,已知這三家公司供貨合同中金額分別是300萬(wàn)元和600萬(wàn)元、300萬(wàn)元和900萬(wàn)元、600萬(wàn)元和900萬(wàn)元,甲看了乙的供貨合同說(shuō):我與乙的供貨合同中金額相同的合同不是600萬(wàn)元,乙看了丙的供貨合同說(shuō):我與丙的供貨合同中金額相同的合同不是300萬(wàn)元,丙說(shuō):我的兩個(gè)供貨合同中金額之和不是1500萬(wàn)元,則甲簽訂的兩個(gè)供貨合同中金額之和是(

A.900萬(wàn)B.1500萬(wàn)元C.不能確定D.1200萬(wàn)元

【答案】D

【解析】

由題意根據(jù)丙的敘述可得丙的供貨合同中金額為300萬(wàn)元和600萬(wàn)元或300萬(wàn)元和900萬(wàn)元,結(jié)合乙的敘述可確定乙的供貨合同中金額為600萬(wàn)元和900萬(wàn)元,再結(jié)合甲的敘述即可得解.

由丙說(shuō):我的兩個(gè)供貨合同中金額之和不是1500萬(wàn)元,可得丙的供貨合同中金額為300萬(wàn)元和600萬(wàn)元或300萬(wàn)元和900萬(wàn)元,

則可確定乙的供貨合同中金額為600萬(wàn)元和900萬(wàn)元,所以甲的供貨合同中金額為300萬(wàn)元和900萬(wàn)元,此時(shí)丙的供貨合同中金額為300萬(wàn)元和600萬(wàn)元,符合題意,

故甲簽訂的兩個(gè)供貨合同中金額之和是萬(wàn)元.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①在線(xiàn)性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

③在回歸直線(xiàn)方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;

④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線(xiàn)恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);

⑥若的觀測(cè)值滿(mǎn)足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺。

⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤. 其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ①若,則的零點(diǎn)有_____個(gè);②若的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,則“存在常數(shù),對(duì)任意的,且,都有”是“數(shù)列 為等差數(shù)列”的( )

A. 充分而不必要條件 B. 必要而不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有限數(shù)列,定義集合為數(shù)列的伴隨集合.

(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫(xiě)出的伴隨集合;

(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;

(Ⅲ)已知有限等差數(shù)列,判斷是否能同時(shí)屬于的伴隨集合,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)的直角坐標(biāo)方程為.

1)求的極坐標(biāo)方程;

2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)C頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在Y軸的非負(fù)半軸上,點(diǎn)是拋物線(xiàn)上的一點(diǎn).

(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程

(2)若點(diǎn)P,Q在拋物線(xiàn)C上,且拋物線(xiàn)C在點(diǎn)P,Q處的切線(xiàn)交于點(diǎn)S,記直線(xiàn) MP,MQ的斜率分別為k1,k2,且滿(mǎn)足,當(dāng)P,Q在C上運(yùn)動(dòng)時(shí),△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.在單位圓上有兩個(gè)定點(diǎn)、,上一動(dòng)點(diǎn),在直線(xiàn)上存在一點(diǎn),滿(mǎn)足為邊的中點(diǎn)).試求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案