【題目】一個(gè)樣本M的數(shù)據(jù)是x1 , x2 , …,xn , 它的平均數(shù)是5,另一個(gè)樣本N的數(shù)據(jù)x12 , x22 , …,xn2它的平均數(shù)是34.那么下面的結(jié)果一定正確的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
【答案】A
【解析】解:設(shè)樣本M的數(shù)據(jù)x12 , x22 , …,xn2它的方差為S2 , 則 S2= [(x1﹣5)2+(x2﹣5)^2+(x3﹣5)2+…(xn﹣5)2]
= [x12+x22+x32…xn2﹣10(x1+x2+x3+…+xn)+25×n]
=34﹣10×5+25=9,
∴SM2=9.
故選:A.
先設(shè)一個(gè)樣本M的數(shù)據(jù)x12 , x22 , …,xn2它的方差為S2 , 利用方差的計(jì)算公式,則S2= [(x1﹣5)2+(x2﹣5)^2+(x3﹣5)2+…(xn﹣5)2]= [x12+x22+x32…xn2﹣10(x1+x2+x3+…+xn)+25×n],從而得出SM2=9即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax﹣1,a≠0
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=﹣1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+x,x∈R,當(dāng)0≤θ≤π時(shí),f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):
若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”。
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?
(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是__________.(寫出所有正確命題的編號(hào))
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn);
②若與都是無理數(shù),則直線不經(jīng)過任何整點(diǎn);
③直線經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過兩個(gè)不同的整點(diǎn);
④直線經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是: 與都是有理數(shù);
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C過點(diǎn)A(﹣ ,1),且與x2﹣3y2=1有相同的漸近線.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過雙曲線C的一個(gè)焦點(diǎn)作傾斜角為45°的直線l與雙曲線交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在點(diǎn)處切線方程為y=3x+b,求a,b的值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)在[1,2]上的最小值;
(Ⅲ)設(shè),若對(duì)任意 ,均存在,使得,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + 與 ﹣3 垂直;
當(dāng)k=時(shí),(2)k + 與 ﹣3 平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com