選修4-4:坐標系與參數(shù)方程
將圓x2+y2=4上各點的縱坐標壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0繞原點逆時針旋轉(zhuǎn)90°所得直線記作l.
(I)求直線l與曲線C的方程;
(II)求C上的點到直線l的最大距離.
【答案】分析:(I)設(shè)曲線C上任一點為(x,y),則(x,2y)在圓x2+y2=4上,代入即可求得曲線C的方程,寫出直線3x-2y-8=0的極坐標方程,記作l,設(shè)直線l上任一點為(ρ,θ),則點(ρ,θ-90°)在l上,代入化簡,再轉(zhuǎn)化為普通方程即可;
(II)設(shè)曲線C上任一點為M(2cosψ,sinψ),到直線l的距離為d=,利用三角知識化為即可求得其最大值;
解答:(Ⅰ)設(shè)曲線C上任一點為(x,y),則(x,2y)在圓x2+y2=4上,
于是x2+(2y)2=4,即
直線3x-2y-8=0的極坐標方程為3ρcosθ-2ρsinθ-8=0,將其記作l,
設(shè)直線l上任一點為(ρ,θ),則點(ρ,θ-90°)在l上,
于是3ρcos(θ-90°)-2ρsin(θ-90°)-8=0,即:3ρsinθ+2ρcosθ-8=0,
故直線l的方程為2x+3y-8=0;
(Ⅱ)設(shè)曲線C上任一點為M(2cosψ,sinψ),
它到直線l的距離為d==
其中ψ滿足:cosψ=,sinψ=
∴當ψ-ψ=π時,dmax=
點評:本題考查直線、橢圓的極坐標方程,考查直線與圓錐曲線上點的距離問題,考查學(xué)生對問題的轉(zhuǎn)化能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標系與參數(shù)方程
在以O(shè)為極點的極坐標系中,直線l與曲線C的極坐標方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)選修4-4:坐標系與參數(shù)方程
在直角坐標系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標系.圓C1,直線C2的極坐標方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標;
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:
坐標系與參數(shù)方程在平面直角坐標系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當α=0時,|AB|=4.
(1)求C1,C2的直角坐標方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)選修4-4:坐標系與參數(shù)方程選講
在直角坐標系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標壓縮為原來的一半得到曲線c2,以O(shè)為極點,x正半軸為極軸建立極坐標系,直線l的極坐標方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案