【題目】在四棱錐中, , ,點M是線段AB上的一點,且.
(1)證明:平面平面ABCD;
(2)求直線CM與平面PCD所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】如圖,已知為橢圓: 的右焦點, , , 為橢圓的下、上、右三個頂點, 與的面積之比為.
(1)求橢圓的標準方程;
(2)試探究在橢圓上是否存在不同于點, 的一點滿足下列條件:點在軸上的投影為, 的中點為,直線交直線于點, 的中點為,且的面積為.若不存在,請說明理由;若存在,求出點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校數學課外興趣小組為研究數學成績是否與性別有關,先統(tǒng)計本校高三年級每個學生一學期數學成績平均分(采用百分制),剔除平均分在分以下的學生后, 共有男生名,女生名,現采用分層抽樣的方法,從中抽取了名學生,按性別分為兩組,并將兩組學生成績分為組, 得到如下頻數分布表.
(Ⅰ)估計男、女生各自的平均分(同一組數據用該組區(qū)間中點值作代表),從計算結果看,能否判斷數學成績與性別有關;
(Ⅱ)規(guī)定分以上為優(yōu)分(含分),請你根據已知條件完成列聯表,并判斷是否有%以上的把握認為“數學成績與性別有關”,( ,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點.
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點、是平面上左、右兩個不同的定點, ,動點滿足:
.
(1)求證:動點的軌跡為橢圓;
(2)拋物線滿足:①頂點在橢圓的中心;②焦點與橢圓的右焦點重合.
設拋物線與橢圓的一個交點為.問:是否存在正實數,使得的邊長為連續(xù)自然數.若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com