一汽車廠生產(chǎn)、、三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛)
| 轎車 | 轎車 | 轎車 |
舒適型 | |||
標準型 |
(1);(2);(3).
解析試題分析:(1)先利用分層抽樣的特點求出該公司這個月生產(chǎn)的轎車的總數(shù),然后利用總數(shù)減去已知的轎車數(shù)求出的值;(2)利用分層抽樣的特點得出輛轎車中舒適型轎車與標準型轎車的數(shù)目,利用列舉法求出相應事件的概率;(3)先求出樣本的平均數(shù),然后確定與平均數(shù)之差的絕對值不超過的數(shù)據(jù),利用古典概型求出相應事件的概率.
試題解析:(1)設該廠本月生產(chǎn)轎車為輛,由題意得,
所以,;
(2)設所抽樣本中有輛舒適型轎車,因為用分層抽樣,所以,解得,
即抽取了輛舒適型轎車,輛標準型轎車,分別記作、、、、,
則從中任取輛的所有基本事件為、、、、、、、、、,共個,
其中至少有輛舒適型轎車的基本事件有個基本事件:、、、、、、,
所以從中任取輛,至少有輛舒適型轎車的概率為;
(3)樣本的平均數(shù)為,
那么與樣本平均數(shù)之差的絕對值不超過的數(shù)為、、、、、這個數(shù),總的個數(shù)為,
所以該數(shù)與樣本平均數(shù)之差的絕對值不超過的概率為.
考點:1.分層抽樣;2.平均數(shù);3.古典概型
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分 )
2013年國慶期間,高速公路車輛較多.某調(diào)查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段,,,,,后得到如下圖的頻率分布直方圖.
(1)此調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的中位數(shù)的估計值;
(3)若從車速在的車輛中任抽取3輛,求抽出的3輛車中車速在的車輛數(shù)的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠生產(chǎn)、兩種元件,其質(zhì)量按測試指標劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機抽取這兩種元件各件進行檢測,檢測結果記錄如下:
B |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對甲、乙的學習成績進行抽樣分析,各抽5門功課,得到的觀測值如下:
通過計算,回答:甲、乙誰的平均成績較好?誰的各門功課發(fā)展較平衡?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為調(diào)查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如下表所示:
(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中隨機抽取2人作進一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得
,,,.
(1)求家庭的月儲蓄對月收入的線性回歸方程;
(2)判斷變量與之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
其中,為樣本平均值,線性回歸方程也可寫為
附:線性回歸方程中,,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某食品廠對生產(chǎn)的某種食品按行業(yè)標準分成五個不同等級,等級系數(shù)X依次為A,B,C,D,E.現(xiàn)從該種食品中隨機抽取20件樣品進行檢驗,對其等級系數(shù)進行統(tǒng)計分析,得到頻率分布表如下:
(1)在所抽取的20件樣品中,等級系數(shù)為D的恰有3件,等級系數(shù)為E的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數(shù)為D的3件樣品記為x1,x2,x3,等級系數(shù)為E的2件樣品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2這5件樣品中一次性任取兩件(假定每件樣品被取出的可能性相同),試寫出所有可能的結果,并求取出的兩件樣品是同一等級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某學校隨機抽取部分新生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中的值;
(2)如果上學路上所需時間不少于60分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿;
(3)現(xiàn)有6名上學路上時間小于分鐘的新生,其中2人上學路上時間小于分鐘. 從這6人中任選2人,設這2人中上學路上時間小于分鐘人數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表.
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com