某工廠生產(chǎn)、兩種元件,其質(zhì)量按測試指標(biāo)劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各件進(jìn)行檢測,檢測結(jié)果記錄如下:







B





由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計(jì)員只記得,且兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.
(1)求表格中的值;
(2)從被檢測的種元件中任取件,求件都為正品的概率.

(1),;(2).

解析試題分析:(1)根據(jù)、兩種元件的檢測數(shù)據(jù)的平均數(shù)與方差分別相等,利用平均數(shù)與方差的計(jì)算公式列方程組求出的值;(2)將元件編號,并將說明哪些是正品,利用列舉法將所有的基本事件與問題中涉及事件所包含的基本進(jìn)行列舉,然后利用古典概型的概率計(jì)算公式求出相應(yīng)事件的概率.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/87/1/hkph2.png" style="vertical-align:middle;" />,,
,得,①
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/0/11g1x4.png" style="vertical-align:middle;" />,,
,得,②
由①②解得
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/a/1by3m3.png" style="vertical-align:middle;" />,所以,;
(2)記被檢測的件的種元件分別為、、,其中、、、為正品,
從中任取件,共有個(gè)基本事件,列舉如下:
、、、、、、
記“件都為正品”為事件,則事件包含以下個(gè)基本事件:
、、、、、,
,所以件都為正品的概率為.
考點(diǎn):1.平均數(shù)與方差;2.古典概型

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的A,B兩班中各抽5名學(xué)生進(jìn)行視力檢測.檢測的數(shù)據(jù)如下:
A班5名學(xué)生的視力檢測結(jié)果:4.3,5.1,4.6,4.1,4.9.
B班5名學(xué)生的視力檢測結(jié)果:5.1,4.9,4.0,4.0,4.5.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?
(2)由數(shù)據(jù)判斷哪個(gè)班的5名學(xué)生視力方差較大?(結(jié)論不要求證明)
(3) 現(xiàn)從A班的上述5名學(xué)生中隨機(jī)選取3名學(xué)生,用X表示其中視力大于4.6的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)







3
7
20
40
20
10

5
15
35
35
7
3
 
現(xiàn)將根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算新工人乙生產(chǎn)三件產(chǎn)品A,給工廠帶來盈利大于或等于100元的概率;
(2)記甲乙分別生產(chǎn)一件產(chǎn)品A給工廠帶來的盈利和記為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,寫出眾數(shù);
(2)小明的父親上班離家的時(shí)間在上午之間,而送報(bào)人每天在時(shí)刻前后
半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等).
①求小明的父親在上班離家前能收到報(bào)紙(稱為事件)的概率;
②求小明的父親周一至周五在上班離家前能收到報(bào)紙的天數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在電阻碳含量對于電阻的效應(yīng)研究中,得到如下表所示的數(shù)據(jù):

含碳量
(x/%)
0.10
0.30
0.40
0.55
0.70
0.80
0.95
20 ℃時(shí)電阻
(y/Ω)
15
18
19
21
22.6
23.8
26
(1)求出y與x的相關(guān)系數(shù)并判斷相關(guān)性;
(2)求出電阻y關(guān)于含碳量x之間的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有甲、乙兩個(gè)工廠生產(chǎn)同一種產(chǎn)品,產(chǎn)品分為一等品和二等品.為了考察這兩個(gè)工廠的產(chǎn)品質(zhì)量的水平是否一致,從甲、乙兩個(gè)工廠中分別隨機(jī)地抽出產(chǎn)品109件,191件,其中甲工廠一等品58件,二等品51件,乙工廠一等品70件,二等品121件.
(1)根據(jù)以上數(shù)據(jù),建立2×2列聯(lián)表;
(2)試分析甲、乙兩個(gè)工廠的產(chǎn)品質(zhì)量有無顯著差別(可靠性不低于99%).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

年齡在60歲(含60歲)以上的人稱為老齡人,某小區(qū)的老齡人有350人,他們的健康狀況如下表:

其中健康指數(shù)的含義是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能夠自理”,-1代表“生活不能自理”。
(1)隨機(jī)訪問該小區(qū)一位80歲以下的老齡人,該老人生活能夠自理的概率是多少?
(2)按健康指數(shù)大于0和不大于0進(jìn)行分層抽樣,從該小區(qū)的老齡人中抽取5位,并隨機(jī)地訪問其中的3位.求被訪問的3位老齡人中恰有1位老齡人的健康指數(shù)不大于0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一汽車廠生產(chǎn)、、三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛)

 
轎車
轎車
轎車
舒適型



標(biāo)準(zhǔn)型



按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取輛,其中有類轎車輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個(gè)容量為的樣本.將該樣本看成一個(gè)總體,從中任取輛,求至少有輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取輛,經(jīng)檢測它們的得分如下:、、、、.把這輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值
不超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級共有學(xué)生640人,試估計(jì)該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案