【題目】如圖是一種加熱食物的太陽(yáng)灶,上面裝有可旋轉(zhuǎn)的拋物面形的反光鏡,鏡的軸截面是拋物線的一部分,盛食物的容器放在拋物線的焦點(diǎn)處,容器由若干根等長(zhǎng)的鐵筋焊接在一起的架子支撐.已知鏡口圓的直徑為8m,鏡深1m

1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線的方程和焦點(diǎn)的位置;

2)若把盛水和食物的容器近似地看作點(diǎn),試求每根鐵筋的長(zhǎng)度.

【答案】1)標(biāo)準(zhǔn)方程是y2=16x,焦點(diǎn)坐標(biāo)是F4,0)(25

【解析】

1)在反光鏡的軸截面內(nèi)建立平面直角坐標(biāo)系,使反光鏡的頂點(diǎn)(即拋物線的頂點(diǎn))與原點(diǎn)重合,x軸垂直于鏡口直徑,根據(jù)點(diǎn)A(1,4)可以求出拋物線的標(biāo)準(zhǔn)方程;(2)由題得A、F兩點(diǎn)間的距離即為每根鐵筋長(zhǎng),求|AF|的長(zhǎng)度即可得解.

解:(1)在反光鏡的軸截面內(nèi)建立平面直角坐標(biāo)系,如圖所示;

使反光鏡的頂點(diǎn)(即拋物線的頂點(diǎn))與原點(diǎn)重合,x軸垂直于鏡口直徑;

由已知,得A點(diǎn)坐標(biāo)是(14),

設(shè)拋物線方程為y2=2pxp0),

16=2p×1,求得p=8;

所以所求拋物線的標(biāo)準(zhǔn)方程是y2=16x,

所以焦點(diǎn)坐標(biāo)是F4,0).

2)盛水的容器在焦點(diǎn)處,所以A、F兩點(diǎn)間的距離即為每根鐵筋長(zhǎng).

計(jì)算|AF|=x1+=1+4=5,即每根鐵筋的長(zhǎng)度是5m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (其中, ).

(1)當(dāng)時(shí),若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

(2)當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,函數(shù)的極大值為,求實(shí)數(shù)的值;

(2)若對(duì)任意的上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲船由A島出發(fā)向北偏東45°的方向作勻速直線航行,速度為nmile/h,在甲船從A島出發(fā)的同時(shí),乙船從A島正南nmile處的B島出發(fā),朝北偏東30°的方向作勻速直線航行,速度為nmile/h.

1)若兩船能相遇,求m;

2)當(dāng)時(shí),兩船出發(fā)2小時(shí)后,求兩船之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,不正確的是(

A.中,若,則

B.在銳角中,不等式恒成立

C.中,若,則必是等邊三角形

D.中,若,則必是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1+=1ab0)的右焦點(diǎn)F1,0),右準(zhǔn)線lx=4.圓C2x2+y2=b2AB為橢圓上不同的兩點(diǎn),AB中點(diǎn)為M

1)求橢圓C1的方程;

2)若直線ABF點(diǎn),直線OMlN點(diǎn),求證:NFAB;

3)若直線AB與圓C2相切,求原點(diǎn)OAB中垂線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點(diǎn),N是PC的中點(diǎn).

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù).

(1)此函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(2)在(1)的條件下,若,恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案