【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得.

(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程;

(2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:線性回歸方程中,

,其中為樣本平均值.

【答案】(1) y=0.3x-0.4;(2)正相關(guān);(3)1.7千元.

【解析】試題分析:(1)由題意,可知,代入公式,求解的值,即可得到回歸直線方程;

(2)由(1)中的回歸直線方程中的回歸系數(shù)的正負(fù),即可作出判斷;

(3)把代入(1)中的回歸直線方程,即求出對(duì)應(yīng)的值,即可作出預(yù)測(cè)

試題解析:

(1)由題意知n=10,i=8,

i=2,又lxxn2=720-1082=80,

lxyiyin=184-1082=24,

由此得=0.3,=2-0.38=-0.4.

故所求線性回歸方程為y=0.3x-0.4.

(2)由于變量y的值隨x值的增加而增加(b=0.3>0),故xy之間是正相關(guān).

(3)x=7代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為y=0.37-0.4=1.7(千元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓x2+y2﹣2x﹣8y+13=0的圓心到直線ax+y﹣1=0的距離為1,則a=(  )
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列數(shù)列{an}的通項(xiàng)公式an(1)n(2n1)(nN*),Sn為其前n項(xiàng)和.

(1)S1S2,S3,S4的值;

(2)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a>b>1,0<c<1,則( 。
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為1的扇形AOB中(O為原點(diǎn)),.點(diǎn)Pxy)是上任意一點(diǎn),則xy+x+y的最大值為( 。

A. B. 1 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=fx)的周期為2,當(dāng)x∈[0,2]時(shí),fx)=(x-1)2,如果gx)=fx)-log5x,則函數(shù)y=gx)的零點(diǎn)個(gè)數(shù)為(  )

A. 1 B. 3 C. 5 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量=(2sinx,-1),=(sinx,3),若函數(shù)fx)=

(Ⅰ)求函數(shù)fx)的最小正周期;

(Ⅱ)求函數(shù)fx)的最大值及取得最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

當(dāng)時(shí),若上為減函數(shù),上是增函數(shù),求值;

對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在原點(diǎn)處切線的斜率為,數(shù)列滿足為常數(shù)且,

(1)求的解析式;

(2)計(jì)算,并由此猜想出數(shù)列的通項(xiàng)公式;

(3)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案