【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉(cāng)庫(kù)M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì), 可以使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn)).
【答案】當(dāng)為
時(shí),工廠產(chǎn)生的噪聲對(duì)居民的影響最小。
【解析】
試題分析:根據(jù)題意,設(shè),則
,在
中,根據(jù)正弦定理得:
,整理得:
,那么在
中,由余弦定理得:
,又因?yàn)?/span>
,所以代入上式得:
,從而得到關(guān)于變量
的函數(shù)關(guān)系式,最后通過化簡(jiǎn)整理得到關(guān)于
的正弦型函數(shù),再求
的最大值,從而求出
的最大值。本題考查解三角形的實(shí)際應(yīng)用,主要是研究圖形,利用題中的已知條件,將正弦、余弦定理應(yīng)用在解題中�?疾閷W(xué)生對(duì)知識(shí)的綜合運(yùn)用能力。
試題解析:設(shè),在
中,
.
因?yàn)?/span>,所以
.
在中,
.
當(dāng)且僅當(dāng),即
時(shí),
取得最大值12,即
取得最大值
.
答:設(shè)為
時(shí),工廠產(chǎn)生的噪聲對(duì)居民的影響最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱的側(cè)棱與底面垂直,體積為
,底面是邊長(zhǎng)為
的正三角形.若
為底面
的中心,則
與平面
所成角的大小為( ).
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)
在直線
上,且拋物線
截直線
所得的弦
的長(zhǎng)為
.
(Ⅰ)求拋物線的方程和
的值.
(Ⅱ)以弦為底邊,以
軸上點(diǎn)
為頂點(diǎn)的三角形
面積為
,求點(diǎn)
坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式ax2﹣2x+1>0對(duì)x∈( ,+∞)恒成立,則a的取值范圍為( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記Sn為正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和,若 ﹣7
﹣8=0,且正整數(shù)m,n滿足a1ama2n=2
,則
+
的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式ax2+5x+c>0的解集為{x| <x<
},
(1)求a,c的值;
(2)解關(guān)于x的不等式ax2+(ac+b)x+bc≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中
,
),若傾斜角為
且經(jīng)過坐標(biāo)原點(diǎn)的直線
與圓
相交于點(diǎn)
(
點(diǎn)不是原點(diǎn)).
(1)求點(diǎn)的極坐標(biāo);
(2)設(shè)直線過線段
的中點(diǎn)
,且直線
交圓
于
兩點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin cos
﹣2
sin2
+
(1)求函數(shù)f(x)的單調(diào)減區(qū)間
(2)已知α∈( ,
),且f(α)=
,求f(
)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com