精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax+
b
x
在(1,f(1))處的切線斜率為1,g(x)=lnx-f(x),
(1)求a,b之間的關系式;
(2)若關于x的不等式g(x)+ax>0對任意x∈(0,+∞)恒成立,求實數a的取值范圍;
(3)已知a>0,且a≠
1
2
,求函數y=g(x)在[1,+∞)上的最大值(用a表示).
考點:利用導數研究函數的極值,利用導數研究函數的單調性
專題:導數的概念及應用,導數的綜合應用
分析:(1)由已知函數f(x)=ax+
b
x
在(1,f(1))處的切線斜率為1,可得f′(1)=a-b=1;
(2)若g(x)+ax=lnx-
b
x
>0恒成立,即lnx>
b
x
恒成立,即b<x•lnx恒成立,構造函數h(x)=x•lnx,利用導數法,求出函數的最小值,可得答案.
(3)g′(x)=0,則x=1,或x=
1-a
a
,由a>0,且a≠
1
2
,分當0<a<
1
2
時和當a>
1
2
時兩種情況分析函數的單調性進而可和函數y=g(x)在[1,+∞)上的最大值.
解答: 解:(1)∵f(x)=ax+
b
x
,
∴f′(x)=a-
b
x2

又∵f(x)=ax+
b
x
在(1,f(1))處的切線斜率為1,
∴f′(1)=a-b=1,
(2)∵g(x)=lnx-f(x)=lnx-ax-
b
x

若g(x)+ax=lnx-
b
x
>0恒成立,
即lnx>
b
x
恒成立,
即b<x•lnx恒成立,
令h(x)=x•lnx,
則h′(x)=lnx+1,
令h′(x)=0,則x=
1
e

當x∈(0,
1
e
)時,h′(x)<0,此時h(x)單調遞減;
當x∈(
1
e
,+∞)時,h′(x)>0,此時h(x)單調遞增;
故當x=
1
e
時,h(x)=x•lnx取最小值-
1
e
,
故b<-
1
e

即a-1<-
1
e
,
即a<1-
1
e
,
即實數a的取值范圍為(-∞,1-
1
e
),
(3)∵g(x)=lnx-f(x)=lnx-ax-
b
x
,
∴g′(x)=
1
x
-a+
b
x2
=
-ax2+x+b
x2
=
-ax2+x+a-1
x2
=
(ax+a-1)(-x+1)
x2
,
令g′(x)=0,則x=1,或x=
1-a
a

∵a>0,且a≠
1
2
,
當0<a<
1
2
時,
1-a
a
>1,
當x∈[1,
1-a
a
)時,g′(x)>0,g(x)為增函數,當x∈(
1-a
a
,+∞)時,g′(x)<0,g(x)為減函數,
故當x=
1-a
a
時,g(x)取最大值ln
1-a
a
-1,
當a>
1
2
時,
1-a
a
<1,
當x∈[1,+∞)時,g′(x)<0,g(x)為減函數,
故當x=1時,g(x)取最大值1-2a
點評:本題考查的知識點是利用導數研究函數的極值,利用函數研究函數的單調性,利用導數研究函數的最值,是導數部分的綜合應用,難度中檔.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為1.
(Ⅰ)求四面體D1-AB1C的左視圖的面積;
(Ⅱ)求四面體D1-AB1C的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,E為AD的中點,F(xiàn)為PC的中點,PE⊥平面ABCD,AD∥BC,AD⊥CD,且BC=CD=
1
2
AD=1.
(Ⅰ)求證:PA⊥平面BEF;
(Ⅱ)若PE=
3
AE,求直線EF和平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知cosα=-
4
5
,α為第二象限角.
(1)求sin(α+
π
4
)的值.        
(2)求cos2α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在一個口袋中裝有12個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到紅球的概率是
1
3
,從袋中任意摸出2個球,至少得到一個黑球的概率是
5
11
.求:
(1)帶中黑球的個數;
(2)從袋中任意摸出3個球,至少得到2個黑球的概率.(結果用分數表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

命題“?x≥1,x2≥1”的否定為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在D=[-1,1]上的函數f(x)滿足任意x1,x2∈D,有
f(x1)-f(x2)
x1-x2
<0,則不等式f(2x+1)<f(x+
2
3
)的解集
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x,y滿足約束條件
x-y+6≥0
x≤3
x+y+k≥0
,且z=2x+4y的最小值為6.
(1)常數k=
 
;
(2)若實數x∈[-
3
2
,3],y∈[0,9]則點P(x,y)落在上述區(qū)域內的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

點P是△ABC所在平面外一點,O為點P在平面ABC內的射影,若PA=PB=PC,則點O是△ABC的
 
心.

查看答案和解析>>

同步練習冊答案