(本題滿分12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求點(diǎn)到平面的距離.
(Ⅰ)證明見解析
(Ⅱ)
(Ⅲ)
【解析】
解法一:(Ⅰ)設(shè)與交點(diǎn)為,延長交的延長線于點(diǎn),
則,∴,∴,∴,
又∵,∴,
又∵,∴,
∴,∴
又∵底面,∴,∴平面,
∵平面,∴平面平面(4分)
(Ⅱ)連結(jié),過點(diǎn)作于點(diǎn),
則由(Ⅰ)知平面平面,
且是交線,根據(jù)面面垂直的性質(zhì),
得平面,從而即
為直線與平面所成的角.
在中,,
在中,
. 所以有,
即直線與平面所成的角為(8分)
(Ⅲ)由于,所以可知點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,即. 在中,,
從而點(diǎn)到平面的距離等于(12分)
解法二:如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系, 則相關(guān)點(diǎn)的坐標(biāo)為
,,,.
(Ⅰ)由于,,
,
所以,
,
所以,
而,所以平面,∵平面,
∴平面平面(4分)
(Ⅱ)設(shè)是平面的一個法向量,則,
由于,,所以有
,
令,則,即,
再設(shè)直線與平面所成的角為,而,
所以,
∴,因此直線與平面所成的角為(8分)
(Ⅲ)由(Ⅱ)知是平面的一個法向量,而,
所以點(diǎn)到平面的距離為(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點(diǎn).
(1)當(dāng)時,求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時,在棱上存在點(diǎn),使平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點(diǎn),為中點(diǎn),為上一個動點(diǎn).
(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時,求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知的直徑的中點(diǎn).
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com