10.下調(diào)查方式中,不合適的是( 。
A.浙江衛(wèi)視“奔跑吧兄弟”綜藝節(jié)目的收視率,采用抽查的方式
B.了解某漁場(chǎng)中青魚的平均重量,采用抽查的方式
C.了解iphone6s手機(jī)的使用壽命,采用普查的方式
D.了解一批汽車的剎車性能,采用普查的方式

分析 根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時(shí)間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.

解答 解:浙江衛(wèi)視“奔跑吧兄弟”綜藝節(jié)目的收視率,采用抽查的方式合適,A不合題意;
了解某漁場(chǎng)中青魚的平均重量,采用抽查的方式合適,B不合題意;
了解iPhone6s手機(jī)的使用壽命,采用普查的方式不合適,C符合題意;
了解一批汽車的剎車性能,采用普查的方式合適,D不合題意,
故選:C.

點(diǎn)評(píng) 本題考查的是抽樣調(diào)查和全面調(diào)查,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對(duì)象的特征靈活選用,一般來說,對(duì)于具有破壞性的調(diào)查、無(wú)法進(jìn)行普查、普查的意義或價(jià)值不大,應(yīng)選擇抽樣調(diào)查,對(duì)于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{3}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2-4=0},則下列關(guān)系式表示正確的是(  )
A.ϕ∈AB.{-2}=AC.2∈AD.{2,-2}?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓心是點(diǎn)C(2,-3)且經(jīng)過原點(diǎn)的圓的方程是( 。
A.(x+2)2+(y-3)2=13B.(x+2)2+(y+3)2=$\sqrt{13}$C.(x+2)2+(y-3)2=$\sqrt{13}$D.(x-2)2+(y+3)2=13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若復(fù)數(shù)z滿足z(1+2i)=2,則z的虛部為( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}i$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x|-1≤x<2},集合B={y|y=(x-1)2+m}.若A∩B=∅,則實(shí)數(shù)m的取值范圍是( 。
A.m≥2B.m>2C.m≤-1D.m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在斜三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,則$\frac{{a}^{2}+^{2}}{{c}^{2}}$=( 。
A.$\frac{3}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示,∠xOy=60°,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$分別是與x軸、y軸正方向相同的單位向量,若$\overrightarrow m$=x$\overrightarrow{e_1}$+y$\overrightarrow{e_2}$,記$\overrightarrow m$=(x,y),設(shè)$\overrightarrow a$=(p,q),若$\overrightarrow a$的模長(zhǎng)為1,則p+q的最大值是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是夾角為60°的兩個(gè)單位向量,則$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2}$與$\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$的夾角的正弦值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案