在空間直角坐標系O-xyz中,有一個平面多邊形,它在xOy平面的正射影的面積為8,在yOz平面和zOx平面的正射影的面積都為6,其中正攝影都是三角形,則這個多邊形的面積為   
【答案】分析:由題意不難得到,這個平面多邊形是三角形,連同三個平面上的正攝影,正好是長方體的一個角,設出長、寬、高,求出長、寬、高,然后可求這個多邊形的面積.
解答:解:這個平面多邊形是三角形,連同三個平面上的正攝影,
正好是長方體的一個角,因為在yOz平面和zOx平面的正射影
的面積都為6,所以設長為a、寬為a、高為b,
則:所以 a=4,b=3
如圖OD=2,AD=BC=4
這個多邊形ABC的面積S==
故答案為:
點評:本題考查平行投影問題,幾何體的體積,考查學生作圖能力,空間想象能力,計算能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系O-xyz中,點A、B、C、D的坐標分別為A(1,,0,,0)、B(0,,2,,0)、C(2,,4,,0)、D(1,,2,,2),則三棱錐A-BCD的體積是( 。
A、2B、3C、6D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系O-xyz中,已知
OA
=(1,2,3)
,
OB
=(2,1,2)
,
OP
=(1,1,2)
,點Q在直線OP上運動,則當
QA
QB
取得最小值時,點Q的坐標為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•徐州模擬)在空間直角坐標系O-xyz中,點P(4,3,7)關于坐標平面yOz的對稱點的坐標為
(-4,3,7)
(-4,3,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閘北區(qū)二模)和平面解析幾何的觀點相同,在空間中,空間曲面可以看作是適合某種條件的動點的軌跡.在空間直角坐標系O-xyz中,空間曲面的方程是一個三元方程F(x,y,z)=0.
設F1、F2為空間中的兩個定點,|F1F2|=2c>0,我們將曲面Γ定義為滿足|PF1|+|PF2|=2a(a>c)的動點P的軌跡.
(1)試建立一個適當?shù)目臻g直角坐標系O-xyz,求曲面Γ的方程;
(2)指出和證明曲面Γ的對稱性,并畫出曲面Γ的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(理)在空間直角坐標系O-xyz中,滿足條件[x]2+[y]2+[z]2≤1的點(x,y,z)構成的空間區(qū)域Ω2的體積為V2([x],[y],[z]分別表示不大于x,y,z的最大整數(shù)),則V2=
7
7

查看答案和解析>>

同步練習冊答案