【題目】在△ABC中,已知角A,B,C所對的三條邊分別是a,b,c,且
(1)求角B的大小;
(2)若 ,求△ABC的面積.

【答案】
(1)解:因為 ,

所以 得:2sinAcosB+sinCcosB+sinBcosC=0

∴2sinAcosB+sinA=0,

∵A∈(0,π),∴sinA≠0,

則cosB=﹣ .B∈(0,π),∴B=


(2)解:由余弦定理得:b2=a2+c2﹣2accosB,

,B= ,

∴13=a2+c2+ac

∴(a+c)2﹣ac=13

∴ac=3


【解析】(1)利用正弦定理化簡已知的表達式,結(jié)合兩角和的正弦函數(shù)以及三角形的內(nèi)角,求出B的值即可.(2)通過余弦定理,以及B的值,a+c=4,求出ac的值,然后求出三角形的面積.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(12分)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD.

(1)證明:平面ACD平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB= ,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于x的不等式:
(1) >1;
(2)x2﹣ax﹣2a2<0 (a為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )過點, 、分別為其左、右焦點, 為坐標原點,點為橢圓上一點, 軸,且的面積為.

(Ⅰ)求橢圓的離心率和方程;

(Ⅱ)設(shè)是橢圓上兩動點,若直線的斜率為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第n年需要付出設(shè)備的維修和工人工資等費用an的信息如圖.
(1)求an;
(2)引進這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)2次拋擲﹣枚骰子(六個面上分別標有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為

查看答案和解析>>

同步練習冊答案