設(shè)函數(shù),數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì),設(shè),若恒成立,求實(shí)數(shù)的取值范圍.

(1) .(2)的取值范圍是.

解析試題分析:(1)由可得:.所以這是一個(gè)等差數(shù)列,由等差數(shù)列的通項(xiàng)公式即可得.(2),.這是典型的用裂項(xiàng)法求和的數(shù)列. 由.要使得恒成立,則.用裂項(xiàng)法可求得,從而得,令.下面求的最小值.將變形得.利用函數(shù)的單調(diào)性便可得最小值,進(jìn)而得的取值范圍.
試題解析:(1)由可得:.
所以是等差數(shù)列.
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/69/f/oyb023.png" style="vertical-align:middle;" />.
(2) .
,
.
.
恒成立.
.
.
,則.
,易知時(shí),最小.
所以,即的取值范圍是.
考點(diǎn):1、等差數(shù)列;2、裂項(xiàng)求和;3、不等關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列滿足,且是方程的兩根。
(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)為正數(shù)的數(shù)列中,,對(duì)任意的,成等比數(shù)列,公比為;成等差數(shù)列,公差為,且
(1)求的值;
(2)設(shè),證明:數(shù)列為等差數(shù)列;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項(xiàng)均不為零的)項(xiàng)等差數(shù)列,且公差.
(1)若,且該數(shù)列前項(xiàng)和最大,求的值;
(2)若,且將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列,求的值;
(3)若該數(shù)列中有一項(xiàng)是,則數(shù)列中是否存在不同三項(xiàng)(按原來的順序)為等比數(shù)列?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式; 
(2)若數(shù)列的前項(xiàng)和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了保障幼兒園兒童的人身安全,國家計(jì)劃在甲、乙兩省試行政府規(guī)范購置校車方案,計(jì)劃若干時(shí)間內(nèi)(以月為單位)在兩省共新購1000輛校車.其中甲省采取的新購方案是:本月新購校車10輛,以后每月的新購量比上一月增加50%;乙省采取的新購方案是:本月新購校車40輛,計(jì)劃以后每月比上一月多新購m輛.
(1)求經(jīng)過n個(gè)月,兩省新購校車的總數(shù)S(n);
(2)若兩省計(jì)劃在3個(gè)月內(nèi)完成新購目標(biāo),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}前三項(xiàng)之和為-3,前三項(xiàng)積為8.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列{an}的前6項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案