分析 (Ⅰ)根據(jù)橢圓的離心率及△PF1F2的周長求出a、b即可;
(Ⅱ)由已知求出MN的長度,然后,由直線和圓相切得到m,k的關(guān)系,再聯(lián)立直線方程和橢圓方程,求出A,B的橫坐標(biāo),代入四邊形面積公式,利用基本不等式求得最值,并得到使四邊形ACBD的面積有最大值時的m,k的值,從而得到直線l的方程.
解答 解:( I)設(shè)橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$,由題可知$\left\{{\begin{array}{l}{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\\{2(a+c)=4+2\sqrt{3}}\end{array}}\right.$,--(2分)
解得$a=2,c=\sqrt{3},b=1$,-----------------------(3分)
所以橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$.-----------------------(4分)
( II)令$x=\sqrt{3}$,解得$y=±\frac{1}{2}$,所以|MN|=1,-----------------------(5分)
直線l與圓x2+y2=1相切可得$\frac{|m|}{{\sqrt{1+{k^2}}}}=1$,即k2+1=m2,-----------------------(6分)
聯(lián)立直線與橢圓的方程,整理得(1+4k2)x2+8kmx+4m2-4=0-----------(7分)
所以${S_{MANB}}=\frac{1}{2}|{MN}||{{x_1}-{x_2}}|=\frac{1}{2}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\frac{{2\sqrt{1+4{k^2}-{m^2}}}}{{1+4{k^2}}}$----(9分)
將k2+1=m2代入可得${S_{MANB}}=\frac{{2\sqrt{3}|k|}}{{1+4{k^2}}}=\frac{{2\sqrt{3}}}{{\frac{1}{|k|}+4|k|}}≤\frac{{\sqrt{3}}}{2}$.------------------(11分)
當(dāng)且僅當(dāng)$\frac{1}{|k|}=4|k|$,即$k=±\frac{1}{2}$時,等號成立,此時$m=±\frac{{\sqrt{5}}}{2}$.------------------(12分)
所以,當(dāng)$k=±\frac{1}{2}$時,四邊形MANB的面積具有最大值$\frac{{\sqrt{3}}}{2}$,直線l方程是$y=\frac{1}{2}x-\frac{{\sqrt{5}}}{2}$或$y=-\frac{1}{2}x+\frac{{\sqrt{5}}}{2}$.-----------------------(13分)
點評 本題考查橢圓方程的求法,考查了直線與圓、圓與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用基本不等式求最值,屬中檔題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com