若橢圓方程為
x2
16
+
y2
4
=1
,則其焦距為( 。
A、2
5
B、2
3
C、4
3
D、4
5
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:直接利用橢圓的標準方程求出a、b、c即可得到結(jié)果.
解答: 解:橢圓方程為
x2
16
+
y2
4
=1
,
所以a=4,b=2,
所以c=2
3

橢圓的焦距為2c=4
3

故選:C.
點評:本題考查橢圓的簡單性質(zhì),基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{
n
2n
}
的前n項的和為( 。
A、1-
n+2
2n+1
B、
1
2n
C、2-
n+2
2n
D、2-
n+4
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在距A城50km的B地發(fā)現(xiàn)稀有金屬礦藏,現(xiàn)知由A至某方向有一條直鐵路AX,B到該鐵路的距離為30km,為在AB之間運送物資,擬在鐵路AX上的某點C處筑一直公路通到B地.已知單位重量貨物的鐵路運費與運輸距離成正比,比例系數(shù)為k1(k1為常數(shù)且k1>0);單位重量貨物的公路運費與運輸距離的平方成正比,比例系數(shù)為k2(k2為常數(shù)且k2>0).設(shè)單位重量貨物的總運費為y元,AC之間的距離為xkm.
(1)將y表示成x的函數(shù);
(2)若k1=20k2,則當(dāng)x為何值時,單位重量貨物的總運費最少.并求出最少運費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項和為,{bn}是等比數(shù)列,且a1=b1,a4+b4=27,S4-b4=10.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)記Tn=a1b1+a2b2+…+anbn(n∈N*),若對于任意不小于2的正整數(shù)n,恒有2n+1×λ×(9n2-21n+16)>Tn-8,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將1米長的一根鐵絲圍成一個矩形,問該矩形的長為多少米時,矩形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實數(shù)c的值為( 。
A、4
B、3
C、9
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=sin(2x-
π
6
)-1,|f(x)-m|<1在x∈[-
π
4
π
6
]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(-∞,0)上是增函數(shù)的是( 。
A、y=1+x2
B、y=1-lg(-x)
C、y=
1
x+1
D、y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x與y=log3x的圖象( 。
A、關(guān)于原點對稱
B、關(guān)于x軸對稱
C、關(guān)于y軸對稱.
D、關(guān)于直線y=x對稱

查看答案和解析>>

同步練習(xí)冊答案