【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析
【解析】
(Ⅰ)先求,再對(duì) 進(jìn)行討論即可.
(Ⅱ)由題知即證,構(gòu)造新函數(shù)設(shè),利用導(dǎo)數(shù)只需即得證.
(Ⅲ)由(Ⅱ)知,累加作和即得證.
(Ⅰ)易得,函數(shù) ,
①當(dāng)時(shí),,所以在上單調(diào)遞增
②當(dāng)時(shí),令,解得 .
當(dāng)時(shí),,所以,
所以在上單調(diào)遞減;
當(dāng)時(shí),,所以,
所以在上單調(diào)遞增.
綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(Ⅱ)當(dāng) 時(shí),.
要證明,
即證,即. 即.
設(shè)則
令得,.
當(dāng)時(shí),,
當(dāng)時(shí),.
所以為極大值點(diǎn),也為最大值點(diǎn)
所以.
即.
故.
(Ⅲ)由(Ⅱ)知,.
令,
則 ,
所以
,
即
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.
(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷售額-成本-推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,,.
(1)若,且,求向量;
(2)若向量與向量共線,常數(shù),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).且曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓E:()過(guò)點(diǎn),其心率等于.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若A,B分別是橢圓E的左,右頂點(diǎn),動(dòng)點(diǎn)M滿足,且橢圓E于點(diǎn)P.
①求證:為定值:
②設(shè)與以為直徑的圓的另一交點(diǎn)為Q,求證:直線經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的內(nèi)切球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)指令,機(jī)器人在平面上能完成下列動(dòng)作:如圖,先從原點(diǎn)O沿正東偏北方向行走一段時(shí)間后,再向正北方向行走一段時(shí)間,但何時(shí)改變方向不定.假定機(jī)器人行走速度為10m/min,則機(jī)器人行走2min時(shí)的可能落點(diǎn)區(qū)域的面積是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】社會(huì)上有人認(rèn)為在機(jī)動(dòng)車駕駛技術(shù)上,男性優(yōu)于女性,這是真的么?某社會(huì)調(diào)查機(jī)構(gòu)與交警合作隨機(jī)統(tǒng)計(jì)了經(jīng)常開(kāi)車的100名駕駛員最近三個(gè)月內(nèi)是否有交通事故或交通違法事件發(fā)生,得到下面的列聯(lián)表:
男 | 女 | 總計(jì) | |
無(wú) | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
總計(jì) | 55 | 45 | 100 |
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
據(jù)此表,可得( ).
A.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足
B.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
C.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
D.認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com