函數(shù)f(x)=
x2-x-2
的單調(diào)遞減區(qū)間是
 
考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:計(jì)算題
分析:復(fù)合函數(shù)求單調(diào)區(qū)間,先求函數(shù)的定義域,單調(diào)區(qū)間是定義域的子區(qū)間.再把被開方式看做二次函數(shù),對稱軸左側(cè)為減函數(shù),求出減區(qū)間.
解答: 解:令x2-x-2>0,得,x<-1,或x>2
∴函數(shù)f(x)=
x2-x-2
的定義域?yàn)椋?∞,-1]∪[2,+∝)
f(x)=
x2-x-2
=
(x-
1
2
)
2
-
7
4

∴單調(diào)遞減區(qū)間是(-∞,-1]
故答案為(-∞,-1]
點(diǎn)評:本題主要考查了二次函數(shù)與其它函數(shù)的復(fù)合函數(shù)單調(diào)性的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將4個(gè)不相同的小球放入編號為1、2、3的3個(gè)盒子中,當(dāng)某個(gè)盒子中球的個(gè)數(shù)等于該盒子編號時(shí)稱為一個(gè)和諧盒,則恰有兩個(gè)和諧盒的概率為( 。
A、
2
81
B、
4
81
C、
12
81
D、
16
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα+cosβ+cosγ=0,且sinα+sinβ+sinγ=0.求cos2(α-β)+cos2(β-γ)+cos2(γ-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,
π
2
)
上的函數(shù)y=3sinx與y=8cotx交于點(diǎn)P,過P作x軸的垂線,垂足為P1,直線P1P與y=cosx的圖象交于點(diǎn)P2,則線段P1P2的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(3,2)
,
b
=(1,-5)
,則
a
b
的夾角為
 
.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)上是減函數(shù),若f(1)=0,則不等式f(x)>0的解集是(  )
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(0,1)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為兩個(gè)正數(shù),且a>b,設(shè)a1=
a+b
2
,b1=
ab
,當(dāng)n≥2,n∈N*時(shí),an=
an-1+bn-1
2
,bn=
an-1bn-1

(Ⅰ)求證:數(shù)列{an}是遞減數(shù)列,數(shù)列{bn}是遞增數(shù)列;
(Ⅱ)求證:an+1-bn+1
1
2
(an-bn)
;
(Ⅲ)設(shè)數(shù)列{an},{bn}前n項(xiàng)和分別為SnTn,求證:Sn<Tn+2(a+b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓ρ=2cosθ,ρ=2sinθ的公共部分面積是( 。
A、
π
4
-
1
2
B、π-2
C、
π
2
-1
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較下圖中兩組數(shù)據(jù),哪組的平均值較大?哪組的方差較大?

查看答案和解析>>

同步練習(xí)冊答案