已知Z)是奇函數(shù),又,
的值。

解:∵為奇函數(shù),∴,

……………………………5分

 
……………………………3分
 
 

…………10分

 
……………………………6分
 

 ∵,∴, ∴,
綜上,.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)是定義域?yàn)镽的偶函數(shù),其圖像均在x軸的上方,對(duì)任意的,都有,且,又當(dāng)時(shí),為增函數(shù)。
(1)求的值;
(2)對(duì)于任意正整數(shù),不等式:恒成立,求實(shí)數(shù)的取值
范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)如果對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)的兩個(gè)極值點(diǎn)分別為判斷下列三個(gè)代數(shù)式:
中有幾個(gè)為定值?并且是定值請(qǐng)求出;
若不是定值,請(qǐng)把不是定值的表示為函數(shù)并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)判斷的奇偶性;
(Ⅱ)設(shè)函數(shù)在區(qū)間上的最小值為,求的表達(dá)式;
(Ⅲ)若,證明:方程有兩個(gè)不同的正數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)(,).
(I)若函數(shù)在其定義域內(nèi)是減函數(shù),求的取值范圍;
(II)函數(shù)是否有最小值?若有最小值,指出其取得最小值時(shí)的值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
設(shè)函數(shù),
(1)用定義證明:函數(shù)是R上的增函數(shù);(6分)
(2)證明:對(duì)任意的實(shí)數(shù)t,都有;(4分)
(3)求值:。(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)當(dāng)時(shí),指出函數(shù)的單調(diào)區(qū)間(不要過(guò)程);
(3)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為2.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
已知定義在R上的函數(shù)是奇函數(shù)
(1)求的值;
(2)判斷的單調(diào)性,并用單調(diào)性定義證明;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)生產(chǎn)一種產(chǎn)品時(shí),固定成本為5 000元,而每生產(chǎn)100臺(tái)產(chǎn)品時(shí)直接消耗成本要增加2500元,市場(chǎng)對(duì)此商品年需求量為500臺(tái),銷(xiāo)售的收入函數(shù)為(萬(wàn)元)(0≤≤5),其中是產(chǎn)品售出的數(shù)量(單位:百臺(tái))
(1)把利潤(rùn)表示為年產(chǎn)量的函數(shù);(2)年產(chǎn)量多少時(shí),企業(yè)所得的利潤(rùn)最大;

查看答案和解析>>

同步練習(xí)冊(cè)答案