某社區(qū)四支籃球隊(duì)參加比賽,現(xiàn)任意將這四支隊(duì)分成兩個(gè)組(每組兩個(gè)隊(duì))進(jìn)行比賽,勝者再賽,則所有可能的比賽情況共有( 。
A、3種B、6種
C、12種D、24種
考點(diǎn):排列、組合的實(shí)際應(yīng)用
專題:計(jì)算題,排列組合
分析:甲可能和另外的3個(gè)隊(duì)中的一隊(duì)一組,所以分組情況有3種,然后每對(duì)中勝者有2種情況,最后的勝者有2種情況,由乘法原理可得結(jié)論.
解答: 解:甲可能和另外的3個(gè)隊(duì)中的一隊(duì)一組,所以分組情況有3種.
這里不考慮兩組有差別,即甲乙-丙丁,和丙丁-甲乙,屬同一種情況,
然后每對(duì)中勝者有2種情況,最后的勝者有2種情況,
所以共有3×2×2=12種.
故選:C.
點(diǎn)評(píng):本題考查乘法原理的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+b,a,b∈R.
(1)已知f(x)在區(qū)間(-∞,1)上單調(diào)遞減,求a的取值范圍;
(2)存在實(shí)數(shù)a,使得當(dāng)x∈[0,b]時(shí),2≤f(x)≤6恒成立,求b的最大值及此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,則這個(gè)三棱錐的體積為
 
;表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(
3x
-
2
x
)8
二項(xiàng)展開式中的常數(shù)項(xiàng)為( 。
A、56B、112
C、-56D、-112

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程是( 。
A、(x+1)2+y2=2
B、(x+1)2+y2=8
C、(x-1)2+y2=2
D、(x-1)2+y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值是(  )
A、-
1
4
或-
1
2
B、0
C、0或-
1
2
D、0或-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0),A(1,0),B(1,1),C(0,1),現(xiàn)向該正方體內(nèi)部隨機(jī)投1000個(gè)點(diǎn),統(tǒng)計(jì)出所投點(diǎn)落在陰影部分的個(gè)數(shù)為328,由此估計(jì)圖中陰影部分的面積為(  )
A、0.328B、0.672
C、0.3D、0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐的外接球的表面積為( 。
A、24π
B、6π
C、
6
π
D、3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
(1)求證:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并求此時(shí)二面角A1-BD-E的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案