【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作多少個(gè)?”現(xiàn)有這樣的一個(gè)正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

【答案】C

【解析】

有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作216個(gè),由正方體的結(jié)構(gòu)及鋸木塊的方法,可知一面帶有紅漆的木塊是每個(gè)面的中間那16塊,共有6×1696個(gè),由此能求出從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率.

有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作216個(gè),

由正方體的結(jié)構(gòu)及鋸木塊的方法,

可知一面帶有紅漆的木塊是每個(gè)面的中間那16塊,共有6×1696個(gè),

∴從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率:

p

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為短潛伏者,潛伏期高于平均數(shù)的患者,稱為長(zhǎng)潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長(zhǎng)潛伏者”的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);

短潛伏者

長(zhǎng)潛伏者

合計(jì)

60歲及以上

90

60歲以下

140

合計(jì)

300

3)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,需要在抽取的300人中分層選取760歲以下的患者做Ⅰ期臨床試驗(yàn),再從選取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長(zhǎng)潛伏者”的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面.底面是菱形,

(Ⅰ)求證:直線平面;

(Ⅱ)求直線與平面所成角的正切值;

(Ⅲ)已知在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)發(fā)展對(duì)環(huán)保的要求,越來越多的燃油汽車被電動(dòng)汽車取代,為了了解某品牌的電動(dòng)汽車的節(jié)能情況,對(duì)某一輛電動(dòng)汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

202011

5000

0.125

380

202012

5100

0.126

246

(注:累計(jì)里程指汽車從出廠開始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開始累計(jì)消耗的電量,

下面對(duì)該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是(

A.等于B.之間C.等于D.大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,邊上異于端點(diǎn)的動(dòng)點(diǎn),于點(diǎn),將矩形沿折疊至處,使面.點(diǎn)分別為的中點(diǎn).

1)證明://面;

2)設(shè),當(dāng)x為何值時(shí),四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購買每件產(chǎn)品時(shí)是否值得購買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=fx)和y=gx)在[-2,2]的圖像如圖所示,給出下列四個(gè)命題:

①方程f[gx]=0有且僅有6個(gè)根

②方程g[fx]=0有且僅有3個(gè)根

③方程f[fx]=0有且僅有5個(gè)根

④方程g[gx]=0有且僅有4個(gè)根

其中正確的命題是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點(diǎn)作直線,且直線與雙曲線的一條漸近線垂直,垂足為,直線與另一條漸近線交于點(diǎn),已知為坐標(biāo)原點(diǎn),若的內(nèi)切圓的半徑為,則雙曲線的離心率為(

A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

同步練習(xí)冊(cè)答案