【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016121日至125日每天的晝夜溫差以及實(shí)驗(yàn)室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

日期

121

122

123

124

125

溫差x/

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.

(2)若選取的是121日和125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

(3)由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計(jì)當(dāng)溫差為9 ℃時(shí),100顆種子中的發(fā)芽數(shù).

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為: ,

【答案】(1);(2)y=x-3;(3)發(fā)芽數(shù)約為19或20

【解析】

1)將這五組數(shù)據(jù)分別記為12,3,4,5,將所有基本事件列舉出來,并確定事件“選取數(shù)據(jù)不是相鄰兩天的數(shù)據(jù)”的基本事件數(shù)目,然后利用古典概型的概率公式可計(jì)算出答案;

2)將日至日的數(shù)據(jù)代入最小二乘法公式計(jì)算出,即可得出回歸直線方程;

3)將日和日的溫差分別代入回歸方程得出這兩日的檢查數(shù)據(jù),并計(jì)算出這兩日數(shù)據(jù)的誤差來說明(2)中所得回歸方程有效,再將代入回歸直線方程可得出顆種子的發(fā)芽數(shù)。

1)將這五組數(shù)據(jù)分別記為12,3,4,5,則從中任取兩組共有10個(gè)結(jié)果,分別為

(1,2),(13),(1,4) (1,5)(2,3),(2,4),(2,5)(3,4),(3,5),(4,5),不相鄰的結(jié)果有(1,3),(1,4)(1,5)(2,4),(2,5),(3,5),共6種,則所求概率P

2)由題得12,27,, =-3

所以線性回歸方程為yx3;

3)當(dāng)x10時(shí),y×10322,|2223|<2;

當(dāng)x8時(shí),y×8317|1716|<2.

所以所得到的線性回歸方程是可靠的.

當(dāng)x9時(shí),=19.5,故100顆種子中的發(fā)芽數(shù)約為1920.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級(jí)的一次月考成績中隨機(jī)抽取了名學(xué)生的成績(滿分分),這名學(xué)生的成績都在內(nèi),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.

1)求圖中的值;

2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)該校高一年級(jí)本次考試成績的平均分;

3)用分層抽樣的方法從成績?cè)?/span>內(nèi)的學(xué)生中抽取人,再從這人中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,求月考成績?cè)?/span>內(nèi)至少有名學(xué)生被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在圖1所示的梯形中,于點(diǎn),且.將梯形沿對(duì)折,使平面平面,如圖2所示,連接,取的中點(diǎn).

(1)求證:平面平面;

(2)在線段上是否存在點(diǎn),使得直線平面?若存在,試確定點(diǎn)的位置,并給予證明;若不存在,請(qǐng)說明理由;

(3)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,,以為球心,為半徑的球與棱分別交于,兩點(diǎn),則二面角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),設(shè),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的參數(shù)方程為為參數(shù),且).

(1)以曲線上的點(diǎn)與原點(diǎn)連線的斜率為參數(shù),寫出曲線的參數(shù)方程;

(2)若曲線的兩個(gè)交點(diǎn)為,直線與直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬元)對(duì)年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額,10)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,

現(xiàn)擬定關(guān)于的回歸方程為

(1)求,的值(結(jié)果精確到0.1);

(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為13萬元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)支付極大地方便了我們的生活,也為整個(gè)杜會(huì)節(jié)約了大量的資源與時(shí)間成本.2018年國家高速公路網(wǎng)力推移動(dòng)支付車輛高速通行費(fèi).推廣移動(dòng)支付之前,只有兩種支付方式:現(xiàn)金支付或支付,其中使用現(xiàn)金支付車輛比例的為,使用支付車輛比例約為,推廣移動(dòng)支付之后,越來越多的車主選擇非現(xiàn)金支付,如表是推廣移動(dòng)支付后,隨機(jī)抽取的某時(shí)間段內(nèi)所有經(jīng)由某高速公路收費(fèi)站駛出高速的車輛的通行費(fèi)支付方式分布及其他相關(guān)數(shù)據(jù):

支付方式

是否需要在入口處取卡

是否需要停車支付

數(shù)量統(tǒng)計(jì)(輛)

平均每輛車行駛出耗時(shí)(秒)

現(xiàn)金支付

135

30

掃碼支付

240

15

支付

750

4

車輛識(shí)別支付

375

4

并以此作為樣本來估計(jì)所有在此高速路上行駛的車輛行費(fèi)支付方式的分布.

已知需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為10秒,不需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為4秒.

(Ⅰ)若此高速公路的日均車流量為9080輛,估計(jì)推廣移動(dòng)支付后比推廣移動(dòng)支付前日均可少發(fā)卡多少張?

(Ⅱ)在此高速公路上,推廣移動(dòng)支付后平均每輛車進(jìn)出高速收費(fèi)站總耗時(shí)能否比推廣移動(dòng)支付前大約減少一半?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案