【題目】已知在圖1所示的梯形中,,于點(diǎn),且.將梯形沿對(duì)折,使平面平面,如圖2所示,連接,取的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線平面?若存在,試確定點(diǎn)的位置,并給予證明;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè),求三棱錐的體積.
【答案】(1)詳見解析;(2)存在,且當(dāng)點(diǎn)為的中點(diǎn)時(shí),平面;(3).
【解析】
(1)取的中點(diǎn),根據(jù)等腰三角形性質(zhì)得.再根據(jù)面面垂直性質(zhì)定理得平面,即得,利用線面垂直判定定理得平面.由平幾知識(shí)得四邊形是平行四邊形.即.從而可得平面.最后根據(jù)面面垂直判定定理得結(jié)論.(2)先判斷點(diǎn)位置,再利用線面平行判定定理證明,(3)先根據(jù)面面垂直性質(zhì)定理得線面垂直,即得錐體的高,再根據(jù)等積法以及錐體體積公式求結(jié)果.
解:(1)取的中點(diǎn),連接,.
因?yàn)?/span>,所以.
因?yàn)槠矫?/span>平面,,平面平面,
所以平面,
又平面,
所以.
又,所以平面.①
因?yàn)?/span>,,
所以,.
因?yàn)?/span>,,所以,所以四邊形是平行四邊形.
所以.②
由①②,得平面.
又平面,所以平面平面.
(2)當(dāng)點(diǎn)為的中點(diǎn)時(shí),平面.
證明:連接,.
由為線段的中點(diǎn),為線段的中點(diǎn),
得.
又平面,平面.
所以平面.
(3)因?yàn)?/span>,所以到平面的距離等于點(diǎn)到平面的距離.
取的中點(diǎn),連接,
則,且.
因?yàn)槠矫?/span>平面,,平面平面,
所以平面,所以平面.
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.
(1)求函數(shù),的解析式;
(2)設(shè)函數(shù),記 .探究是否存在正整數(shù),使得對(duì)任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為調(diào)查期末考試中高一學(xué)生作弊情況,隨機(jī)抽取了200名高一學(xué)生進(jìn)行調(diào)查,設(shè)計(jì)了兩個(gè)問(wèn)題,問(wèn)題1:你出生月份是奇數(shù)嗎?問(wèn)題2:期末考試中你作弊了嗎?然后讓受調(diào)查的學(xué)生每人擲一次幣,出現(xiàn)“正面朝上”則回答問(wèn)題1,出現(xiàn)“反面朝上”則回答問(wèn)題2,答案只能填“是”或“否”不能棄權(quán).結(jié)果統(tǒng)計(jì)后得到了53個(gè)“是”的答案,則估計(jì)有百分之幾的學(xué)生作弊了?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對(duì)晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進(jìn)行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2)
根據(jù)上述數(shù)據(jù)作出散點(diǎn)圖,可知綠豆種子出芽數(shù) (顆)和溫差具有線性相關(guān)關(guān)系。
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計(jì)4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)。
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,直線與橢圓交于,兩點(diǎn),與軸,軸分別交于點(diǎn),,且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn),分別作軸的垂線,垂足分別為,.
(1)求橢圓的方程;
(2)是否存在直線,使得點(diǎn)平分線段?若存在,求出直線的方程,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實(shí)驗(yàn)室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的,據(jù)此說(shuō)明(2)中所得線性回歸方程是否可靠?并估計(jì)當(dāng)溫差為9 ℃時(shí),100顆種子中的發(fā)芽數(shù).
附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程的兩根之和等于兩根之積的一半,則一定是( )
A. 直角三角形 B. 等腰三角形 C. 鈍角三角形 D. 等邊三角形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com