【題目】已知在圖1所示的梯形中,,于點,且.將梯形沿對折,使平面平面,如圖2所示,連接,取的中點.

(1)求證:平面平面;

(2)在線段上是否存在點,使得直線平面?若存在,試確定點的位置,并給予證明;若不存在,請說明理由;

(3)設,求三棱錐的體積.

【答案】(1)詳見解析;(2)存在,且當點的中點時,平面;(3).

【解析】

1)取的中點,根據(jù)等腰三角形性質得.再根據(jù)面面垂直性質定理得平面,即得,利用線面垂直判定定理得平面.由平幾知識得四邊形是平行四邊形.即.從而可得平面.最后根據(jù)面面垂直判定定理得結論.(2)先判斷點位置,再利用線面平行判定定理證明,(3)先根據(jù)面面垂直性質定理得線面垂直,即得錐體的高,再根據(jù)等積法以及錐體體積公式求結果.

解:(1)取的中點,連接.

因為,所以.

因為平面平面,,平面平面,

所以平面,

平面,

所以.

,所以平面.①

因為,

所以,.

因為,,所以,所以四邊形是平行四邊形.

所以.②

由①②,得平面.

平面,所以平面平面.

(2)當點的中點時,平面.

證明:連接,.

為線段的中點,為線段的中點,

.

平面平面.

所以平面.

(3)因為,所以到平面的距離等于點到平面的距離.

的中點,連接

,且.

因為平面平面,,平面平面,

所以平面,所以平面.

所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)a≠0,函數(shù)

1)若,求,的值;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.

(1)求函數(shù),的解析式;

(2)設函數(shù),記 .探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為調查期末考試中高一學生作弊情況,隨機抽取了200名高一學生進行調查,設計了兩個問題,問題1:你出生月份是奇數(shù)嗎?問題2:期末考試中你作弊了嗎?然后讓受調查的學生每人擲一次幣,出現(xiàn)正面朝上則回答問題1,出現(xiàn)反面朝上則回答問題2,答案只能填不能棄權.結果統(tǒng)計后得到了53的答案,則估計有百分之幾的學生作弊了?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2)

根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差具有線性相關關系。

(1)求綠豆種子出芽數(shù) (顆)關于溫差的回歸方程

(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)。

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點與其短軸的一個端點是等邊三角形的三個頂點,點在橢圓上,直線與橢圓交于,兩點,與軸,軸分別交于點,,且,點是點關于軸的對稱點,的延長線交橢圓于點,過點,分別作軸的垂線,垂足分別為,.

(1)求橢圓的方程;

(2)是否存在直線,使得點平分線段?若存在,求出直線的方程,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行了分析研究,分別記錄了2016121日至125日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

日期

121

122

123

124

125

溫差x/

10

11

13

12

8

發(fā)芽數(shù)y/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.

(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.

(2)若選取的是121日和125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程.

(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).

附:回歸方程中斜率和截距的最小二乘法估計公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的方程的兩根之和等于兩根之積的一半,則一定是( )

A. 直角三角形 B. 等腰三角形 C. 鈍角三角形 D. 等邊三角形

查看答案和解析>>

同步練習冊答案