【題目】某中學(xué)從高三男生中隨機抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對學(xué)生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進行不同項目的體能測試,若在這7名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.

【答案】(1)直方圖見解析;(2).

【解析】

1)由題意知,0.050,從而n100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣, 35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為,利用列舉法能求出第4組中至少有一名學(xué)生被抽中的概率.

(1)由頻率分布表可得

,所以,

(2)因為第1,4,5組共有35名學(xué)生,利用分層抽樣,在35名學(xué)生中抽取7名學(xué)生,每組分別為:第1組;第4組;第5組.

設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為.

則從7位學(xué)生中抽兩位學(xué)生的基本事件分別為:一共21種.

記“第4組中至少有一名學(xué)生被抽中”為事件,即包含的基本事件分別為:一共3種,于是

所以, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競賽,由成績得到如下的頻率分布直方圖.試利用頻率分布直方圖求:

1)這名學(xué)生成績的眾數(shù)與中位數(shù);

2)這名學(xué)生的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三個乒乓球協(xié)會分別選派3,1,2名運動員參加某次比賽,甲協(xié)會運動員編號分別為,,乙協(xié)會編號為,丙協(xié)會編號分別為,,若從這6名運動員中隨機抽取2名參加雙打比賽.

(1)用所給編號列出所有可能抽取的結(jié)果;

(2)求丙協(xié)會至少有一名運動員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運動員來自同一協(xié)會的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:①若,則 ; ②若;③若,則; ④若,則,其中正確命題的序號是( )

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.

(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了實現(xiàn)綠色發(fā)展,避免浪費能源,某市政府計劃對居民用電采用階梯收費的方法.為此,相關(guān)部分在該市隨機調(diào)查了戶居民六月份的用電量(單位:)和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況.

用電量數(shù)據(jù)如下:

.

對應(yīng)的家庭收入數(shù)據(jù)如下:

.

(Ⅰ)根據(jù)國家發(fā)改委的指示精神,該市計劃實施階階梯電價,使的用戶在第一檔,電價為/;的用戶在第二檔,電價為/的用戶在第三檔,電價為/,試求出居民用電費用與用電量間的函數(shù)關(guān)系;

(Ⅱ)以家庭收入為橫坐標(biāo),電量為縱坐標(biāo)作出散點圖(如圖),求關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù)).

(Ⅲ)小明家的月收入,按上述關(guān)系估計小明家月支出電費多少元?

參考數(shù)據(jù):,,,.

參考公式:一組相關(guān)數(shù)據(jù),,…,的回歸直線方程的斜率和截距的最小二乘法估計分別為,,其中為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為;

②若,則函數(shù)的最小值為

③若,滿足,則的最小值為

④函數(shù)的最小值為

正確的有__________.(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯誤的是( )
A.f(x)的一個周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對稱
C.f(x+π)的一個零點為x=
D.f(x)在( ,π)單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊答案