在二項(xiàng)展開式(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5中,則a0+a1+a2+a3+a4+a5=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:令等式中的x都取1,求得展開式中各項(xiàng)系數(shù)和.
解答: 解:令x=1得
(2-1)5=a0+a1+a2+a3+a4+a5
即1=a0+a1+a2+a3+a4+a5
故答案為:1.
點(diǎn)評(píng):本題考查求展開式中各項(xiàng)系數(shù)和的重要方法是賦值法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求出焦點(diǎn)到準(zhǔn)線的距離是2的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(x2-ax+b),a,b∈R,其中e自然對(duì)數(shù)的底.
(Ⅰ)當(dāng)a=4時(shí),求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)在區(qū)間[-
3
2
,+∞)上有兩個(gè)相距為
7
的極值點(diǎn),求關(guān)于a的函數(shù)y=f(a-2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.
(1)求C1,C2的方程;
(2)設(shè)C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A,B,直線MA,MB分別與C1相交與D,E.
(i)證明:MA⊥MB;
(ii)記△MAB,△MDE的面積分別是S1,S2.問:是否存在直線l,使得
S1
S2
=
17
32
?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足4acosB-bcosC=ccosB.
(1)求cosB的值;
(2)若
BA
BC
=3,b=3
2
,求a和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)圖象的一部分,則其函數(shù)解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β)+2,x∈R,a,b,α,β是常數(shù),且f(1)=1,則f(2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的斜率為3,直線l2經(jīng)過點(diǎn)A(1,2),B(2,a),若直線l1⊥l2則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“神舟十號(hào)”飛船的運(yùn)行初始軌道是以地球球心為一個(gè)焦點(diǎn)的橢圓.設(shè)地球半徑為R,且“神舟十號(hào)”飛船離地面的最大距離和最小距離分別是H和h,“神舟十號(hào)”飛船的運(yùn)行軌道的離心率是
 

查看答案和解析>>

同步練習(xí)冊答案