已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為T=6π,且f(2π)=2
(1)求ω和A的值;
(2)設(shè)α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α-β).
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:計(jì)算題,三角函數(shù)的求值
分析:(1))依題意得ω=
=
1
3
,又f(2π)=2,知A=4;
(2)由f(3α+π)=4cosα=
16
5
,f(3β+
2
)=-sinβ=-
20
13
,可求得cosα=
4
5
,sinβ=
5
13
;從而可求得cos(α-β).
解答: 解:(1)依題意得ω=
T
=
=
1
3
,
∴f(x)=Asin(
x
3
+
π
6
),
又f(2π)=2,即Asin
6
=2,
∴A=2×2=4,
(2)由(1)知,f(x)=4sin(
x
3
+
π
6
),
∵f(3α+π)=4sin(
3α+π
3
+
π
6
)=4sin(α+
π
2
)=4cosα=
16
5
,
∴cosα=
4
5
;
又f(3β+
2
)=4sin(
3β+
2
3
+
π
6
)=4sin(β+π)=-sinβ=-
20
13
,
∴sinβ=
5
13
;
又α,β∈[0,
π
2
],
∴sinα=
1-cos2α
=
3
5
,cosβ=
1-sin2β
=
12
13

∴cos(α-β)=cosαcosβ+sinαsinβ
=
4
5
×
12
13
+
5
13
×
3
5

=
63
65
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查三角函數(shù)中的恒等變換應(yīng)用.著重考查誘導(dǎo)公式與兩角差的余弦,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),已知過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為
x=-2+t
y=-4+t
,直線l與曲線C分別交于M,N.
(1)寫(xiě)出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)在(1)的條件下,求異面直線AE與CD所成角的余弦值;
(3)求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式
3x2+2x+2
x2+x+1
≥m對(duì)于任意的實(shí)數(shù)x均成立,求自然數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=
2
a,在線段SA上取一點(diǎn)E(不含端點(diǎn))使EC=AC,截面CDE與SB交于點(diǎn)F.
(1)求證:四邊形EFCD為直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(2)設(shè)SB的中點(diǎn)為M,當(dāng)
CD
AB
的值是多少時(shí),能使△DMC為直角三角形?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上.
(1)求證:AC⊥平面BB1C1C;
(2)當(dāng)α為何值時(shí),AB1⊥BC1,且使點(diǎn)D恰為BC中點(diǎn)?
(3)(理科做)當(dāng)α=arccos
1
3
,且AC=BC=AA1時(shí),求二面角C1-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b、x、y都是正數(shù),且x+y=a+b.求證:
a2
a+x
+
b2
b+y
a+b
2
.(用柯西不等式證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折成直二面角,則二面角B-AC-D的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)結(jié)論:
①偶函數(shù)的圖象一定與Y軸相交;
②奇函數(shù)的圖象一定通過(guò)原點(diǎn);
③f(x)=0(x∈R)既是奇函數(shù),又是偶函數(shù);
④偶函數(shù)的圖象關(guān)于y軸對(duì)稱.
其中正確的是
 
.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案