【題目】某校在高二數(shù)學競賽初賽考試后,對90分以上(含90分)的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若分數(shù)段的學生人數(shù)為2.

1)求該校成績在分數(shù)段的學生人數(shù);

2)估計90分以上(含90分)的學生成績的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù)).

【答案】140;(2)眾數(shù)115、中位數(shù)113,平均數(shù)113.

【解析】

1)先求得成績在內(nèi)的頻率,結(jié)合分數(shù)段的人數(shù)即可求得成績在分數(shù)段的學生人數(shù);

2)根據(jù)頻率分布直方圖中最高矩形,即可得眾數(shù);從左至右,將小矩形面積求和,至面積和為0.5時,對應底邊的數(shù)值即為中位數(shù);將各小矩形面積乘以對應底邊的中點值,求和即為平均數(shù)的估計值.

1)∵分數(shù)段的頻率為,

分數(shù)段的人數(shù)為2

分數(shù)段的參賽學生人數(shù)為.

2)根據(jù)頻率分布直方圖,最高小矩形底面中點值為115,所以90分以上(含90分)的學生成績的眾數(shù)的估計值為115

從左依次計算各小矩形的面積為,因而中位數(shù)的估計值為,

平均數(shù)的估計值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知 分別為橢圓 的上、下焦點, 是拋物線 的焦點,點在第二象限的交點,且

(1)求橢圓的方程;

(2)與圓相切的直線 (其中)交橢圓于點, ,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設動點的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ) 是曲線上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得,若存在,請求出定點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批草莓中,隨機抽取個,其重量(單位:克)的頻率分布表如下:

分組(重量)





頻數(shù)(個)





已知從個草莓中隨機抽取一個,抽到重量在的草莓的概率為

1)求出,的值;

2)用分層抽樣的方法從重量在的草莓中共抽取個,再從這個草莓中任取個,求重量在中各有個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求直線的極坐標方程和曲線的直角坐標方程;

(Ⅱ)已知,直線與曲線交于, 兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過圓軸正半軸的交點A作圓O的切線M上任意一點,過M作圓O的另一條切線,切點為Q.當點M在直線上運動時,△MAQ的垂心的軌跡方程為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校設計了一個實驗考察方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作,規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中考生甲有4道題能正確完成,2道題不能完成,考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)求甲、乙兩考生正確完成題數(shù)的分布列,并計算其數(shù)學期望;

(2)請分析比較甲、乙兩考生的實驗操作能力.

查看答案和解析>>

同步練習冊答案