【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點坐標為;
⑤若,曲線C為雙曲線,且虛半軸長為.
其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上)
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某中學高一級學生的一次數(shù)學統(tǒng)測成績得到一樣本,其分組區(qū)間和頻數(shù)是:,2;,7;,10;,x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如下圖所示,據(jù)此解答如下問題.
(1)求樣本的人數(shù)及x的值;
(2)估計樣本的眾數(shù),并計算頻率分布直方圖中的矩形的高;
(3)從成績不低于80分的樣本中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為,求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知函數(shù).求的極大值和極小值.
(2)已知是實數(shù),1和-1是函數(shù)的兩個極值點.
①求和的值;
②設函數(shù)的導函數(shù),求的極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了準備里約奧運會的選拔,甲、乙兩人進行隊內(nèi)射箭比賽,各射4支箭,兩人4次所得環(huán)數(shù)如下:(最高為10環(huán))
甲 | 6 | 6 | 9 | 9 |
乙 | 7 | 9 |
(Ⅰ)已知在乙的4支箭中隨機選取1支時,此支射中環(huán)數(shù)小于6環(huán)的概率不為零,且在4支箭中,乙的平均環(huán)數(shù)高于甲的平均環(huán)數(shù),求的值;
(Ⅱ)如果,,從甲、乙兩人的4次比賽中隨機各選取1次,并將其環(huán)數(shù)分別記為,,求的概率;
(Ⅲ)在4次比賽中,若甲、乙兩人的平均環(huán)數(shù)相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,矩形和矩形所在平面互相垂直,與平面及平面所成的角分別為,,、分別為、的中點,且.
(1)求證:平面;
(2)求線段的長;
(3)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行數(shù)學、物理、化學、生物四科競賽,甲、乙、丙、丁分別參加其中的一科競賽,且沒有兩人參加同一科競賽.①甲沒有參加數(shù)學生物競賽;②乙沒有參加化學、生物競賽;③若甲參加化學競賽,則丙不參加生物競賽;④丁沒有參加數(shù)學、化學競賽;⑤丙沒有參加數(shù)學、化學競賽.若以上命題都是真命題,那么丁參加的競賽科目是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP=2,D是AP的中點,E,F,G分別是PC,PD,CB的中點,將△PCD沿CD折起,使點P在平面ABCD內(nèi)的射影為點D,如圖(2).
(1)求證:AP∥平面EFG;
(2)求三棱錐P-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了了解全校學生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數(shù)恰好各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月上網(wǎng)次數(shù)分為5組:,,,,,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學生中月上網(wǎng)次數(shù)不少于15次的學生人數(shù);
(Ⅲ)在抽取的40名學生中,從月上網(wǎng)次數(shù)不少于20次的學生中隨機抽取2人 ,求至少抽到1名女生
的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班有42名男生,30名女生,已知男女身高各有明顯不同,現(xiàn)欲調(diào)查平均身高,若采用分層抽樣方法,抽取男生1人,女生1人,這種做法是否合適,若不合適,應怎樣抽取?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com