【題目】某班運(yùn)動隊(duì)由足球運(yùn)動員18人,籃球運(yùn)動員12人、羽毛球運(yùn)動員6人組成(每人只參加一項(xiàng)),現(xiàn)從這些運(yùn)動員中抽取個容量為的樣本,若分別采用系統(tǒng)抽樣法和分層抽樣法,則都不用剔除個體;當(dāng)抽取樣本的容量為時,若采用系統(tǒng)抽樣法,則需要剔除一個個體,則樣本容量 ( )

A. 6B. 7C. 12D. 18

【答案】A

【解析】

根據(jù)容量為采用系統(tǒng)抽樣法和分層抽樣法,都不用剔除個體可得為6的倍數(shù),再利用樣本容量為時,采用系統(tǒng)抽樣法需要剔除1個個體,驗(yàn)證排除即可.

因?yàn)椴捎孟到y(tǒng)抽樣法和分層抽樣法,不用剔除個體,

所以的正約數(shù),

又因?yàn)?/span>

所以為6的倍數(shù),因此

因?yàn)楫?dāng)樣本容量為時,若采用系統(tǒng)抽樣法,則需要剔除1個個體,

所以為35的正約數(shù),因此,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線,兩點(diǎn).

(Ⅰ)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=1,且a3+1a2+1a4+2的等比中項(xiàng).

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在一個周期內(nèi)的圖像如圖所示.

(I)求函數(shù)的解析式;

(II)設(shè),且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍以及這兩個根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,﹣ ), =( sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
(1)求f(x)的最小正周期.
(2)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個圈,頭節(jié)高五寸,頭圈一尺三,逐節(jié)多三分,逐圈少分三,一蟻往上爬,遇圈則繞圈。爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺),問:此民謠提出的問題的答案是( )

A. 61.395尺B. 61.905尺C. 72.705尺D. 73.995尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因?yàn)閷σ磺衳∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ΔABC的內(nèi)角A,B,C的對邊分別為a,b,c,根據(jù)下列條件解三角形,其中有兩解的是

A. a=2,b=3,A=30°B. b=6,c=4,A=120°

C. a=4,b=6,A=60°D. a=3,b=6,A=30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案