已知函數(shù)f(x)=ax2+x-a,a∈R.
(1)若函數(shù)f(x)有最大值
17
8
,求實(shí)數(shù)a的值;
(2)解不等式f(x)>1(a≥0).
考點(diǎn):二次函數(shù)的性質(zhì)
專題:計算題
分析:(1)函數(shù)f(x)有最大值
17
8
,則
a<0
-4a2-1
4a
=
17
8
,解之,即可求實(shí)數(shù)a的值;
(2)f(x)=ax2+x-a>1,即ax2+x-(a+1)>0,即 (x-1)(ax+a+1)>0,再分類討論,確定不等式的解集.
解答: 解:(1)∵函數(shù)f(x)有最大值
17
8
,所以a≥0,不滿足題意;
a<0
-4a2-1
4a
=
17
8

∴8a2+17a+2=0,∴a=-2或a=-
1
8

(2)f(x)=ax2+x-a>1,即ax2+x-(a+1)>0,即 (x-1)(ax+a+1)>0
a=0時,解集為(1,+∞)
a>0時,解集為(-∞,-1-
1
a
)∪(1,+∞).
點(diǎn)評:本題考查函數(shù)的最值,考查解不等式,解題的關(guān)鍵是確定方程兩根的大小關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,曲線C1和C2的參數(shù)方程分別為sinθ+cosθ=
3
ρ
,ρ=2cosθ
,若點(diǎn)P(x,y)為C2對應(yīng)直角坐標(biāo)系中圖形上一點(diǎn),點(diǎn)A為C1對應(yīng)直角坐標(biāo)系中圖形上一點(diǎn),則|PA|最小值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈(0,2)時,f(x)=3x,則f(1)+f(2)+f(3)+…+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,
(1)求證:CN∥平面AMD;
(2)求面AMN與面NBC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在[
π
4
,
2
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}中有
20a41a42a43a60
=
100a1a2a3a100
,則在等差數(shù)列{bn}中,類似的結(jié)論有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=25,圓O1的圓心為O1(m,0)且與圓O交于點(diǎn)P(3,4),過點(diǎn)P且斜率為(k≠0)的直線l分別交圓O,O1于點(diǎn)A,B.
(1)若k=1,且BP=7
2
,求圓O1的方程;
(2)過點(diǎn)P作垂直于直線l的直線l1分別交圓O,O1于點(diǎn)C,D.當(dāng)m為常數(shù)時,試判斷AB2+CD2是否是定值?若是定值,求出這個值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={0,2,4,6},集合Q={0,1,3,5},則M∪Q等于(  )
A、{0}
B、{0,1,2,3,4,5,6}
C、{1,2,3,4,5,6,}
D、{0,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,sinx)
,
b
=(cos(2x+
π
3
),sinx)
,函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)在△ABC中,角C為鈍角,若f(
C
2
)=-
1
4
,a=2,c=2
3
.求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案