在直線l:y=x+1與圓C:x2+y2+2x-4y+1=0相交于兩點(diǎn)A、B,則|AB|=   
【答案】分析:先將圓的方程化成標(biāo)準(zhǔn)形式,然后求出圓心和半徑,最后根據(jù)弦的一半、圓心到直線的距離和半徑構(gòu)成直角三角形建立等式,解之即可求出所求.
解答:解:∵圓C:x2+y2+2x-4y+1=0
∴(x+1)2+(y-2)2=4即圓心C(-1,2),半徑為2
則圓心C(-1,2)到直線l:y=x+1的距離為d==
∴(2+(2=22
解得|AB|=2
故答案為:2
點(diǎn)評:本題主要考查了直線與圓的位置關(guān)系,以及考查學(xué)生的理解能力,是高中的C級要求,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、點(diǎn)P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點(diǎn),且
PA
=
AB
,則稱點(diǎn)P為“λ點(diǎn)”,那么直線l上有
 
個“λ點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順河區(qū)一模)在直線l:y=x+1與圓C:x2+y2+2x-4y+1=0相交于兩點(diǎn)A、B,則|AB|=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知定點(diǎn)M(1,2),點(diǎn)P和Q分別是在直線l:y=x-1和y軸上動點(diǎn),則當(dāng)△MPQ的周長最小值時,△MPQ的面積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市房山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知定點(diǎn)M(1,2),點(diǎn)P和Q分別是在直線l:y=x-1和y軸上動點(diǎn),則當(dāng)△MPQ的周長最小值時,△MPQ的面積是( )
A.
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊答案