點(diǎn)P在直線l:y=x-1上,若存在過(guò)P的直線交拋物線y=x2于A,B兩點(diǎn),且
PA
=
AB
,則稱(chēng)點(diǎn)P為“λ點(diǎn)”,那么直線l上有
 
個(gè)“λ點(diǎn)”.
分析:畫(huà)出圖象,設(shè)出A,P兩點(diǎn)的坐標(biāo),進(jìn)而寫(xiě)出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)在曲線上,整理出關(guān)于x的二次方程,根據(jù)二次方程的判別式得到方程恒有解,得到有無(wú)窮個(gè)點(diǎn).
解答:精英家教網(wǎng)解:本題采作數(shù)形結(jié)合法易于求解,如圖,
設(shè)A(m,n),P(x,x-1)
則B(2m-x,2n-x+1),
∵A,B在y=x2上,
∴n=m2,2n-x+1=(2m-x)2
消去n,整理得關(guān)于x的方程x2-(4m-1)x+2m2-1=0(1)
∵△=(4m-1)2-4(2m2-1)=8m2-8m+5>0恒成立,
∴方程(1)恒有實(shí)數(shù)解,
∴有無(wú)窮多解.
點(diǎn)評(píng):本題考查直線與拋物線之間的關(guān)系,可以看做一個(gè)新定義問(wèn)題,本題解題的關(guān)鍵是利用一元二次方程的解的判斷求出結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、點(diǎn)P在直線l:y=x-1上,若存在過(guò)P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱(chēng)點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省長(zhǎng)沙市南雅中學(xué)高二(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

點(diǎn)P在直線l:y=x-1上,若存在過(guò)P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱(chēng)點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是( )
A.直線l上的所有點(diǎn)都是“點(diǎn)”
B.直線l上僅有有限個(gè)點(diǎn)是“點(diǎn)”
C.直線l上的所有點(diǎn)都不是“點(diǎn)”
D.直線l上有無(wú)窮多個(gè)點(diǎn)(點(diǎn)不是所有的點(diǎn))是“點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市海淀區(qū)八一中學(xué)高三(上)周練數(shù)學(xué)試卷(10)(理科)(解析版) 題型:選擇題

點(diǎn)P在直線l:y=x-1上,若存在過(guò)P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱(chēng)點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是( )
A.直線l上的所有點(diǎn)都是“點(diǎn)”
B.直線l上僅有有限個(gè)點(diǎn)是“點(diǎn)”
C.直線l上的所有點(diǎn)都不是“點(diǎn)”
D.直線l上有無(wú)窮多個(gè)點(diǎn)(點(diǎn)不是所有的點(diǎn))是“點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京市高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

點(diǎn)P在直線l:y=x-1上,若存在過(guò)P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱(chēng)點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是( )
A.直線l上的所有點(diǎn)都是“點(diǎn)”
B.直線l上僅有有限個(gè)點(diǎn)是“點(diǎn)”
C.直線l上的所有點(diǎn)都不是“點(diǎn)”
D.直線l上有無(wú)窮多個(gè)點(diǎn)(點(diǎn)不是所有的點(diǎn))是“點(diǎn)”

查看答案和解析>>

同步練習(xí)冊(cè)答案