【題目】以原點(diǎn)為圓心,半徑為的圓 與直線相切.

(1)直線過點(diǎn)截圓所得弦長為求直線 的方程;

(2)設(shè)圓軸的正半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為 的直線交圓兩點(diǎn),且 ,證明:直線恒過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

【答案】(1) ;(2).

【解析】

分析:(1)先由直線和圓相切得到圓的方程,再由垂徑定理列式,分直線斜率存在與不存在兩種情況得到結(jié)果;(3)聯(lián)立直線和圓,由韋達(dá)定理得到交點(diǎn)的坐標(biāo),由這兩個(gè)點(diǎn)寫出直線方程,進(jìn)而得到直線過定點(diǎn).

詳解:

(1)∵圓與直線 相切,

∴圓心到直線的距離為,

∴圓的方程為:

若直線的斜率不存在,直線 ,

此時(shí)直線截圓所得弦長為 ,符合題意;

若直線的斜率存在,設(shè)直線 ,

由題意知,圓心到直線的距離為 ,解得:,

此時(shí)直線,

則所求的直線

(2)由題意知, ,設(shè)直線,

與圓方程聯(lián)立得: ,

消去得:

,

換掉得到B點(diǎn)坐標(biāo)

,

∴直線AB的方程為

整理得:

則直線AB恒過定點(diǎn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條公路的交匯點(diǎn)處有一學(xué)校,現(xiàn)擬在兩條公路之間的區(qū)域內(nèi)建一工廠,在兩公路旁(異于點(diǎn))處設(shè)兩個(gè)銷售點(diǎn),且滿足(千米),(千米),設(shè).

(1)試用表示,并寫出的范圍;

(2)當(dāng)為多大時(shí),工廠產(chǎn)生的噪聲對(duì)學(xué)校的影響最。垂S與學(xué)校的距離最遠(yuǎn)).

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國共產(chǎn)黨第十九次全國代表大會(huì)于20171024日在北京召開,會(huì)議提出“決勝全面建成小康社會(huì)”.某市積極響應(yīng)開展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會(huì)”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)“情況,從某縣調(diào)查得到農(nóng)村居民2011年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年人均純收入(百元)

41

45

48

56

60

64

71

注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000.

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,預(yù)測2020年該縣農(nóng)村居民家庭年人均純收入能否達(dá)到“全面建成小康社會(huì)”的標(biāo)準(zhǔn)?

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域?yàn)镽.
(1)求實(shí)數(shù)m的范圍;
(2)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時(shí),求4a+7b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買個(gè)易損零件,或每臺(tái)都購買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買臺(tái)機(jī)器的同時(shí)應(yīng)購買個(gè)還是個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商小王對(duì)其所經(jīng)營的某一型號(hào)二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程

(Ⅱ)已知每輛該型號(hào)汽車的收購價(jià)格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案