【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,。數(shù)列的前項(xiàng)和為,且。
(1)求數(shù)列的通項(xiàng)公式及其前項(xiàng)和;
(2)證明數(shù)列為等差數(shù)列,并求出的通項(xiàng)公式;
(3)設(shè)數(shù)列,問是否存在正整數(shù) ,使得成等差數(shù)列,若存在,求出所有滿足要求的;若不存在,請說明理由。
【答案】(1);(2)證明見解析,;(3)存在正整數(shù) ,使得成等差數(shù)列。理由見解析。
【解析】
(1)利用等比數(shù)列基本量運(yùn)算即可得到數(shù)列的通項(xiàng)公式及其前項(xiàng)和;(2)由 得到 ,進(jìn)而求得 ,利用等差數(shù)列定義證明即可;(3) 因?yàn)?/span>,所以,利用反證法即可證明.
(1)設(shè)正項(xiàng)等比數(shù)列的公比為,則由得,從而,又由得,因此,,
所以,。
(2)方法一:因?yàn)?/span>,所以,
從而數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,故,
故,
當(dāng)時(shí),,且時(shí)適合,因此,,
從而當(dāng)時(shí),為常數(shù),所以,數(shù)列為等差數(shù)列。
方法二:因?yàn)?/span>,
所以,當(dāng)時(shí),有,
兩式相減得:,即,
故,即,
又由得,從而,故,
所以,數(shù)列為等差數(shù)列。
(3)因?yàn)?/span>,
所以,
假設(shè)存在存在正整數(shù) ,使得成等差數(shù)列,則
,即,
令,則原問題等價(jià)于存在正整數(shù),使得,即成立。
因?yàn)?/span>(因?yàn)?/span>),故數(shù)列單調(diào)遞增,
若,即,則,
從而,即,而,
因此,,這與恒成立矛盾,故只能有,即,
從而,故,即, (*)
①若為奇數(shù),,則記,從而,
因?yàn)閿?shù)列單調(diào)遞增,所以數(shù)列單調(diào)遞減,故當(dāng)時(shí),,而,故,因此,(*)式無正整數(shù)解。
②若為偶數(shù),則記,即,同理可得(*)無正整數(shù)解。
綜上,不存在存在正整數(shù),使得成等差數(shù)列,也即不存在正整數(shù) ,使得成等差數(shù)列。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60°,G為BC的中點(diǎn),H為CD中點(diǎn).
(1)求證:平面FGH∥平面BED;
(2)求證:BD⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園舉辦雕塑展覽吸引著四方賓客,旅游人數(shù)與人均消費(fèi)(元)的關(guān)系如下:.
(1)若游客客源充足,那么當(dāng)天接待游客多少人時(shí),公園的旅游收入最多?
(2)若公園每天運(yùn)營成本為5萬元(不含工作人員的工資),還要上繳占旅游收入的稅收,其余自負(fù)盈虧,目前公園的工作人員維持在40人,要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(不負(fù)債),每天的游客人數(shù)應(yīng)控制在怎樣的合理范圍內(nèi)?(注:旅游收入=旅游人數(shù)×人均消費(fèi))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,過橢圓的左焦點(diǎn)且傾斜角為的直線與圓相交所得弦長為.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線與橢圓交于兩點(diǎn),且,若存在,求直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海警基地碼頭的正西方向海里處有海礁界碑,過點(diǎn)且與成角(即北偏東)的直線為此處的一段領(lǐng)海與公海的分界線(如圖所示)。在碼頭的正西方向且距離點(diǎn)海里的領(lǐng)海海面處有一艘可疑船停留,基地指揮部決定在測定可疑船的行駛方向后,海警巡邏艇從處即刻出發(fā)。若巡邏艇以可疑船的航速的倍前去攔截,假定巡邏艇和可疑船在攔截過程中均未改變航向航速,將在點(diǎn)處截獲可疑船。
(1)若可疑船的航速為海里小時(shí),,且可疑船沿北偏西的方向朝公海逃跑,求巡邏艇成功攔截可疑船所用的時(shí)間。
(2)若要確保在領(lǐng)海內(nèi)(包括分界線)成功攔截可疑船,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且被圓截得的線段長為,求的方程;
(2)求過點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有四個(gè)景點(diǎn),一位游客來該市游覽,已知該游客游覽的概率為,游覽、和的概率都是,且該游客是否游覽這四個(gè)景點(diǎn)相互獨(dú)立.
(1)求該游客至多游覽一個(gè)景點(diǎn)的概率;
(2)用隨機(jī)變量表示該游客游覽的景點(diǎn)的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500元/分鐘和200元分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com