已知函數(shù)y=sin2x與y=cos(x+φ)(0≤φ<π),它們的圖象有一個(gè)橫坐標(biāo)為
π
12
的交點(diǎn),則φ的值是
 
考點(diǎn):正弦函數(shù)的圖象,余弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:由于函數(shù)y=sin2x與y=y=cos(x+φ),它們的圖象有一個(gè)橫坐標(biāo)為
π
12
的交點(diǎn),可得sin(
π
6
)=cos(
π
12
+φ),根據(jù)φ的范圍和正弦函數(shù)的單調(diào)性即可得出φ的值.
解答: 解:函數(shù)y=sin2x與y=cos(x+φ)(0≤φ<π),它們的圖象有一個(gè)橫坐標(biāo)為
π
12
的交點(diǎn),
∴sin(
π
6
)=cos(
π
12
+φ)=
1
2

π
12
+φ=2kπ+
π
3
,k∈Z,有φ=2kπ+
π
4
,
∵0≤φ<π,∴
π
12
≤φ+
π
12
13π
12
,
故解得φ=
π
4

故答案為:
π
4
點(diǎn)評(píng):本題考查了三角函數(shù)的圖象與性質(zhì)、三角函數(shù)求值,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在三棱柱ABC-A1B1C1中,
AE
=4
EA1
,
BF
=
FB1
,
CG
=
GC1
,面BCE、面ACF、面ABG相交于點(diǎn)O,則三棱柱的體積:三棱錐O-ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,平面的方程為Ax+By+Cz+D=0,現(xiàn)有平面α的方程為x+y+z-2=0,則坐標(biāo)原點(diǎn)到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,有下列四個(gè)命題:其中正確命題的序號(hào)是( 。
①若m?β,α⊥β則m⊥α;
②若m?β,α∥β,則m∥α;
③若m⊥α,m⊥β,n⊥α,則n⊥β;
④若m∥α,m∥β,n∥α,則n∥β.
A、③④B、①②C、②④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為 ( 。
A、直角三角形B、銳角三角形
C、鈍角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角△ABC中,已知A(-3,0),B(3,0),直角頂點(diǎn)C.
(1)點(diǎn)C的軌跡是什么,求其軌跡方程;
(2)延長(zhǎng)BC至D使得|DC|=|BC|,求點(diǎn)D的軌跡方程;
(3)連接OD交AC于點(diǎn)P,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-2x
+
1
x+3
的定義域?yàn)椋ā 。?/div>
A、(-3,0]
B、(-3,1]
C、(-∞,-3)∪(-3,0]
D、(-∞,-3)∪(-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x+a+2b-1是R上的奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)求f′(2)+f′(-2)的值;
(3)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a與直線b垂直,a∥面α,則b與面α的位置關(guān)系是( 。
A、b∥αB、b?α
C、b與α相交D、以上都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案