【題目】已知函數(shù)的部分圖像如圖所示,考查下列說法:
①的圖像關(guān)于直線對(duì)稱
②的圖像關(guān)于點(diǎn)對(duì)稱
③若關(guān)于x的方程在上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為
④將函數(shù)的圖像向右平移個(gè)單位可得到函數(shù)的圖像
其中正確個(gè)數(shù)的是( )
A.0B.1C.2D.3
【答案】C
【解析】
先由三角函數(shù)的圖像可得函數(shù)解析式為再分別求函數(shù)的對(duì)稱軸方程,對(duì)稱中心,結(jié)合函數(shù)的單調(diào)性求值域,然后由函數(shù)圖像的平移變換逐一判斷各選項(xiàng)即可得解.
解:不妨設(shè),
由圖可知,,即,即,即,
即
又,
則,即,
即
令,則,
即函數(shù)的對(duì)稱軸方程為,顯然選項(xiàng)A錯(cuò)誤;
令,則,
即函數(shù)的對(duì)稱中心為,顯然選項(xiàng)B錯(cuò)誤;
由函數(shù)的圖像可得:函數(shù)在為減函數(shù),在為增函數(shù),
又,,,
即關(guān)于x的方程在上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為,即選項(xiàng)C正確;
又,即將函數(shù)的圖像向右平移個(gè)單位可得到函數(shù)的圖像,故選項(xiàng)D正確,
綜上可得正確個(gè)數(shù)的是2個(gè),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大小(不計(jì)算具體值,給出結(jié)論即可);
(2)把評(píng)分不低于70分的用戶稱為“評(píng)分良好用戶”,能否有的把握認(rèn)為“評(píng)分良好用戶”與性別有關(guān)?
參考附表:
參考公式,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)當(dāng)b=-1時(shí),函數(shù)f(x)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)b=1時(shí),
①若對(duì)于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范圍;
②若a≥2,求函數(shù)f(x)在區(qū)間[0,2]上的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)為每天180元時(shí),房間會(huì)全部住滿;房間單價(jià)增加10元,就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館每間每天需花費(fèi)20元的各種維護(hù)費(fèi)用.房間定價(jià)多少時(shí),賓館利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線
(1)求證:直線過定點(diǎn);
(2)求直線被圓所截得的弦長(zhǎng)最短時(shí)的值;
(3)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),記的導(dǎo)函數(shù)為,當(dāng)時(shí),滿足.若使不等式 成立,則實(shí)數(shù)的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點(diǎn),為的中點(diǎn), ,.將△沿折起到△的位置,使得平面平面, 為的中點(diǎn),如圖2.
(Ⅰ)求證: 平面;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com