【題目】已知函數(shù)時(shí)都取得極值;

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求的取值范圍

【答案】1a,b=-2遞增區(qū)間是(-,- )與(1,+)遞減區(qū)間是(-,1)(2c-1或c2

【解析】 試題分析:(1)根據(jù)極值定義得f)=0,f1=0解方程組可得的值,再列表根據(jù)導(dǎo)函數(shù)符號(hào)確定單調(diào)區(qū)間(2)不等式恒成立問題一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題:fx最大值c2根據(jù)(1)可得fx最大值為f2),解不等式可得的取值范圍

試題解析:解:(1)fx)=x3ax2bxcfx)=3x22axb

f)=,f1)=32ab0

ab=-2

fx)=3x2-x-2=(3x+2)(x-1),函數(shù)fx的單調(diào)區(qū)間如下表:

x

(-,-

(-,1

1

1,+

fx

0

0

fx

極大值

極小值

所以函數(shù)f(x)的遞增區(qū)間是(-,- )與(1,+

遞減區(qū)間是(-1

2fx)=x3x22xc,x〔-1,2〕,當(dāng)x=-時(shí),fx)=c

為極大值,而f2=2+c,則f2=2+c為最大值。

要使fxc2x〔-1,2〕)恒成立,只需c2f2)=2c

解得c-1或c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓心坐標(biāo)為( ,1)的圓M與x軸及直線y= x分別相切于A,B兩點(diǎn),另一圓N與圓M外切、且與x軸及直線y= x分別相切于C、D兩點(diǎn).
(1)求圓M和圓N的方程;
(2)過點(diǎn)B作直線MN的平行線l,求直線l被圓N截得的弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,0),B(6,7),C(0,3).
①求BC邊上的高所在直線的方程;
②求BC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)創(chuàng)“市級(jí)優(yōu)質(zhì)學(xué)!钡募、乙兩所學(xué)校復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問了位市民,根據(jù)這位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好),繪制莖葉圖如下:

(1)分別估計(jì)該市的市民對(duì)甲、乙兩所學(xué)校評(píng)分的中位數(shù);

(2)分別估計(jì)該市的市民對(duì)甲、乙兩所學(xué)校的評(píng)分不低于分的概率;

(3)根據(jù)莖葉圖分析該市的市民對(duì)甲、乙兩所學(xué)校的評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

已知

(1)求的值

(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價(jià)的線性回歸方程 可供選擇的數(shù)據(jù)

(3)用表示(2)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值。當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。

參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對(duì)白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號(hào)

1月12號(hào)

1月13號(hào)

1月14號(hào)

1月15號(hào)

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為,請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷量.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設(shè)△AOB的外接圓圓心為E.

(1)若⊙E與直線CD相切,求實(shí)數(shù)a的值;
(2)設(shè)點(diǎn)P在圓E上,使△PCD的面積等于12的點(diǎn)P有且只有三個(gè),試問這樣的⊙E是否存在,若存在,求出⊙E的標(biāo)準(zhǔn)方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的側(cè)棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點(diǎn)M在側(cè)棱上.
(1)求證:BC⊥平面BDP;
(2)若側(cè)棱PC與底面ABCD所成角的正切值為 ,點(diǎn)M為側(cè)棱PC的中點(diǎn),求異面直線BM與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案