【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號

1月12號

1月13號

1月14號

1月15號

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.

(參考公式:,

【答案】(1);(2);(3)19杯.

【解析】試題分析:(1)由選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)為事件,得出基本事件的總數(shù),利用古典概型,即可求解事件的概率;

2)由數(shù)據(jù)求解,求由公式,求得 ,即可求得回歸直線方程;

3)當(dāng),代入回歸直線方程,即可作出預(yù)測的結(jié)論。

試題解析:

)設(shè)選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)為事件,所有基本事件(其中,月份的日期數(shù))有種, 事件包括的基本事件有,

種. 所以

)由數(shù)據(jù),求得,

由公式,求得,, 所以關(guān)于的線性回歸方程為

)當(dāng)時(shí),.所以該奶茶店這種飲料的銷量大約為 杯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的四條側(cè)棱長相等,底面ABCD為正方形,M為PB的中點(diǎn),求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線PD與CM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值;

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.設(shè)D,E分別為PA,AC中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:BC⊥平面PAB;
(Ⅲ)試問在線段AB上是否存在點(diǎn)F,使得過三點(diǎn) D,E,F(xiàn)的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點(diǎn)F的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點(diǎn)D.

(1)求證:BD⊥A1C;
(2)若E在棱BC1上,且滿足DE∥面ABC,求三棱錐E﹣ACC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的 (縱坐標(biāo)不變),再將所得到的圖象上所有點(diǎn)向左平移 個(gè)單位,所得函數(shù)圖象的解析式為(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x+
D.y=sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知
(1)證明f(x)是R上的增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請求出a的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案