各項均為負數(shù)的數(shù)列{an}中,an2=n2,則數(shù)列{an}的前n項和Sn等于( 。
分析:由題意可得數(shù)列{an}的通項公式,進而可得首項,代入求和公式計算可得.
解答:解:∵an2=n2,數(shù)列{an}各項均為負數(shù),
∴an=-n,可得a1=-1,
∴Sn=
n(-1-n)
2
=-
n(n+1)
2

故選B
點評:本題考查等差數(shù)列的前n項和以及數(shù)列的通項公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為負數(shù)的數(shù)列{an}中,已知點(an,an+1)(n∈N*)在函數(shù)y=
2
3
x
的圖象上,且a2a5=
8
27
.則數(shù)列{an}的通項公式為an=
-(
2
3
n-2
-(
2
3
n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為負數(shù)的數(shù)列{an}中,已知2an=3an+1,且a2a5=
8
27
,
(1)求證:{an}是等比數(shù)列,并求出通項公式
(2)-
16
81
是這個數(shù)列的項嗎?,如果是,是第幾項?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+a
bx-c
(b=2n,n∈N*)
的定義域為{x|x≠1},圖象過原點,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)已知各項均為負數(shù)的數(shù)列{an}前n項和為Sn,滿足4Snf(
1
an
)=1
,求證:-
1
an+1
<ln
n+1
n
<-
1
an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+a
bx-c
(b=2n,n∈N*)
的定義域為{x|x≠1},圖象過原點,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)已知各項均為負數(shù)的數(shù)列{an}前n項和為Sn,滿足4Snf(
1
an
)=1
,求證:-
1
an+1
<ln
n+1
n
<-
1
an
;
(3)設(shè)g(m,n)=
1
m
+
1
m+1
+…+
1
n
,是否存在m1,,n1,m2,n2∈N*,使得ln2011∈(g(m1,n1),g(m2,n2))?若存在,求出m1,,n1,m2,n2,證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案