分析:h′(x)=a-
+(x>0).對(duì)a分類討論:當(dāng)a≥1時(shí),當(dāng)
<a<1時(shí),當(dāng)a=
時(shí),當(dāng)
0<a<時(shí),當(dāng)a=0時(shí),當(dāng)a<0時(shí),即可得出函數(shù)的單調(diào)性.
解答:
解:h′(x)=a-
+(x>0).
當(dāng)a=0時(shí),h′(x)=-
+=
,令h′(x)>0,解得0<x<1,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得
1<x,此時(shí)函數(shù)h(x)單調(diào)遞減;
當(dāng)a≠0時(shí),h′(x)=
.
當(dāng)a≥1時(shí),令h′(x)>0,解得1<x,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得0<x<1,此時(shí)函數(shù)h(x)單調(diào)遞減;
當(dāng)
<a<1時(shí),
0<<1,令h′(x)>0,解得1<x,或
0<x<,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得
<x<1,此時(shí)函數(shù)h(x)單調(diào)遞減;
當(dāng)a=
時(shí),
h′(x)=≥0,此時(shí)函數(shù)h(x)在x>0單調(diào)遞增;
當(dāng)
0<a<時(shí),
>1,令h′(x)>0,解得0<x<1,或
x>,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得1<x<
,此時(shí)函數(shù)h(x)單調(diào)遞減;
當(dāng)a<0時(shí),
<0<1,令h′(x)>0,解得0<x<1,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得1<x,此時(shí)函數(shù)h(x)單調(diào)遞減.
綜上可得:當(dāng)a=0時(shí),函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減;
當(dāng)a≥1時(shí),函數(shù)h(x)在區(qū)間(1,+∞)上單調(diào)遞增,在區(qū)間(0,1)單調(diào)遞減;
當(dāng)
<a<1時(shí),函數(shù)h(x)在區(qū)間
(0,),(1,+∞)上單調(diào)遞增,在區(qū)間
(,1)上單調(diào)遞減;
當(dāng)a=
時(shí),函數(shù)h(x)在區(qū)間(0,+∞)上單調(diào)遞增;
當(dāng)0<a
<時(shí),函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減;
當(dāng)a<0時(shí),函數(shù)h(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減.