復數(shù)z1=1+bi,z2=-2+i,若
z1
z2
的實部和虛部互為相反數(shù),則實數(shù)b的值為( 。
A、3
B、
1
3
C、-
1
3
D、-3
考點:復數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復數(shù)
分析:化簡復數(shù)
z1
z2
為a+bi(a、b∈R)的形式,實部和虛部互為相反數(shù),可得實數(shù)b的值.
解答: 解:復數(shù)z1=1+bi,z2=-2+i,
z1
z2
=
1+bi
-2+i
=
(1+bi)(-2-i)
(-2+i)(-2-i)
=
(b-2)+(-2b-1)i
5

z1
z2
的實部和虛部互為相反數(shù),
∴b-2=2b+1,
解得b=-3.
故選:D.
點評:本題考查復數(shù)代數(shù)形式的混合運算,復數(shù)的基本概念的應(yīng)用,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)x0是函數(shù)f(x)=x 
1
2
-3的零點,則x0的值是( 。
A、4B、8C、9D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)曲線y=
2x-x2
與x軸所圍成的區(qū)域為D,向區(qū)域D內(nèi)隨機投一點,則該點落入?yún)^(qū)域{(x,y)∈D|x2+y2<2}的概率是(  )
A、
π-1
π
B、
π
π+1
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當x∈[-2,0]時,f(x)=(
2
2
x-1,若在區(qū)間(-2,6)內(nèi),函數(shù)y=f(x)-loga(x+2),(a>0,a≠1)恰有1個零點,則實數(shù)a的取值范圍是( 。
A、(1,4)
B、(4,+∞)
C、(
1
4
,1)∪(4,+∞)
D、(0,1)∪(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù),則復數(shù)(-1+i)(1+i)=( 。
A、-2+iB、-2
C、-1+iD、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1),
b
=(-1,k),如果
a
b
,則實數(shù)k的值等于(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖甲,將一個正三棱柱ABC-DEF截去一個三棱錐A-BCD,得到幾何體BCDEF,如圖乙,則該幾何體的正視圖(或稱主視圖)是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=2sin(ωx+
π
3
)(ω>0,x∈R),且以π為最小正周期.
(1)求f(
π
2
)的值;
(2)已知f(
α
2
+
π
12
)=
10
13
,α∈(-
π
2
,0),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,且過點(1,
3
2
).拋物線C2:x2=-2py(p>0)的焦點坐標為(0,-
1
2
).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點M是直線l:2x-4y+3=0上的動點,過點M作拋物線C2的兩條切線,切點分別為A,B,直線AB交橢圓C1于P,Q兩點.
(i)求證直線AB過定點,并求出該定點坐標;
(ii)當△OPQ的面積取最大值時,求直線AB的方程.

查看答案和解析>>

同步練習冊答案